
EXPERIENCING AUML IN THE GAIA METHODOLOGY

Luca Cernuzzi
DEI Universidad Católica “Nuestra Señora de la Asunción”, Campus Universitario, C.C. 1683, Asunción, Paraguay

Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, Reggio Emilia, Italy

Keywords: Agent Oriented Methodologies, Gaia, AUML, Open Multi-Agent Systems

Abstract: In the last few years a great number of AOSE methodologies have been proposed, some of which centered
on organizational aspects to better capture the behavior of agents societies. Those methodologies may be
considered very useful for modeling open systems composed of a great number of interacting autonomous
agents. Gaia exploits organizational abstractions to provide clear guidelines for the analysis and design of
complex and open Multi-Agent Systems (MAS). However, the notation of the Gaia methodology is
probably less powerful (and perhaps less acceptable for industry solutions) than others (like AUML). In this
perspective, this aims at performing a preliminary exploration towards the potential application of the
AUML notation into the Gaia methodology: it explores the above issues using an application example and
pays specific attention to the problem of modeling the complexity of open MAS and emergent behaviors.

1 INTRODUCTION

In the last few years a great number of AOSE
methodologies have been proposed trying to model
specific agents architectures, or extending accepted
techniques and methods from traditional OO
engineering paradigm. However, they are dependent
on abstractions and tools that may be unsuitable for
modeling new trends in agent-based systems..

Other researchers have recently proposed to
identify appropriate abstractions for Multi-Agent
Systems (MAS), and to propose software
engineering methodologies accordingly. Some of
such methodologies are Gaia (Zambonelli et al.,
2003), MESSAGE (Caire et al., 2001), TROPOS
(Giunchiglia et al., 2002), and ROADMAP (Juan et
al., 2002). All of these methodologies share the idea
that a MAS may be viewed as an organized society
of individual agents with their roles and different
kinds of interactions among them according to
specific protocols that are related to the roles of the
interacting agents. Some of those methodologies
introduce different abstractions however, very few
of them explicitly focus on organizational ones.

Among those, we consider that the new Gaia
proposal (Zambonelli et al., 2003) (the first proposal
was centered on closed communities of cooperating

agents) may be specially significant when used in
the analysis and design of open MAS. In effect, Gaia
exploits organizational abstractions that are
necessary for designing and building systems in
complex, open environments. Our considerations are
reinforced by the evaluation of Gaia as presented in
(Sturm and Shehory, 2003).

However, probably due to its simplicity, Gaia
notations are poor and far to be widely accepted for
industry solutions (unlike UML in OO software
engineering). This aspect seems to be quite evident
in the specification of agent interactions (Sturm and
Shehory, 2003). In fact, the Gaia protocol model
while rigorously specify actors and input and output
of the protocol, use informal natural language to
specify its semantics, including the dependency and
speech-act interactions involved. Given this, it may
be very interesting to re-use richer notations founded
on a more consolidated paradigms, like object
orientation with its proven techniques and solutions,
and adapt them to MAS specification needs.

In this paper we try to apply AUML to Gaia.
AUML is not per se a thorough methodology
However it models in a very rich and expressive way
the Agents Interaction Protocols (AIP) that
constitute a central aspect for open MAS. Thus, AIP
may naturally replace the Gaia protocols model.

283
Cernuzzi L. and Zambonelli F. (2004).
EXPERIENCING AUML IN THE GAIA METHODOLOGY.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 283-288
DOI: 10.5220/0002618802830288
Copyright c© SciTePress

The remainder of this paper is organized as
follow. Section 2 introduces the idea of open MAS
and an illustrating example. Section 3 synthetically
presents the new Gaia proposal. Section 4 analyzes
the AUML notation and describes how it is possible
to use it within Gaia by means of the analysis
specification of the illustrating example. Section 5
discusses related work in the area. Finally, Section 6
concludes and outlines open research directions.

2 OPEN MAS: AN EMERGENT
PARADIGM

Agents may be conceived as stand-alone entities that
accomplish particular tasks on behalf of a user (e.g.,
personal digital assistants, e-mail filters, buy
assistants). However, usually, the environments
where agents accomplish their tasks are populated
with other agents. In these MAS, the global behavior
of the system derives from the interaction (co-
operation, co-ordination, negotiation, etc.) among
the existing agents.

So, a MAS is based on two types of aspects:
individual and collective. The former set comprises
those aspects found in classical systems but is the
latter that includes those constituting a new
dimension: the organizational aspects.

It may be possible to distinguish between two
main classes of MAS:
- distributed problem solving systems in which
agents are explicitly designed to co-operatively
achieve a specific goal in a closed way. That is, all
agents are defined a priori, they are co-operative to
each other and, therefore, they can trust one another
during interactions;
- open systems in which each agent has its own aims
and objectives and is not designed to share a
common goal with others. Moreover, since the
objectives of different agents may be in opposition
(competitive), agents should not necessarily trust
each other.

Actually, a growing trend in agent applications
focuses on open MAS based on a great number of
agents whose interactions may produce an emergent
behavior and distributed intelligence. Examples of
them may be found in most Internet-based systems
(e.g., agents for information retrieval and web
service agents) in which the agents have to exploit
services, knowledge, and capabilities offered by
other agents. Also, it includes all those systems that
involve interactions between agents on behalf of
different stakeholders (e.g., e-commerce agents).

Critical aspects in open MAS applications are the
organizational structure (if any) and specially the
organizational rules that control the behavior of self-

interested agents. For this reason it is very important
to focus on methodologies that may support the
modeling of those aspects, among the agents with
their roles and interaction.

2.1 Illustrating Example: the Agents
Marketplace

A representative example of open MAS are agent
marketplaces. A marketplace can be considered any
place where some proactive entities (e.g. persons,
enterprises, or computational organizations) can go
to put on sale services and/or goods and, vice versa,
where other proactive entities go to buy good and
service they are in need of.

Currently, marketplaces may exist in the form of
Web sites, where specific communities of users
interested in specific classes of goods can meet and
arrange their commercial transactions in an
interactive way and without the constraint of
physical co-location. Still, the need of some form of
interaction limits the capability and widespread
acceptance of such Web sites, due to the amount of
time which may be required for looking and
contracting for goods.

Agents can effectively accomplish the tasks of
looking for goods on behalf of clients, selling goods
on behalf of providers, and negotiating with each
other directly, without direct intervention of
involved humans and/or enterprises (apart from the
interaction with its agents). Thus, we can envision
the Internet will be populated with a variety of
special-purpose marketplaces.

In such marketplaces, agents interested in
specific classes of goods will meet to access an
environment made up of "sales offers" (possibly
based on an auction model) and of "wanted
requests". Such agents, in a given marketplace, will
form an organization made up of agents playing the
roles of "client" and "provider" in a wanted request
model as well as those of “bidder” and “supplier” in
an auction-based model, and interacting with each
other according to specific negotiation patterns. The
intrinsic openness of the scenario, where different
agents may enter the marketplaces to negotiate,
introduces the issues of controlling negotiations in a
proper way so as to avoid agents, which have a self-
interested behavior, cheat to with each other.

3 GAIA IN A NUTSHELL

A first overview of the Gaia methodology with its
models and their relationships is presented below.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

284

Figure 1: The Gaia Methodology

Gaia does not consider the collection of
requirements stage, starting right at the analysis
phase which aims to collect all the specifications of
the computational organization of the MAS. This
includes the identification of (see Figure 1):
- The goals of the organizations that constitute the
overall system and their expected global behavior.
This will be refined during the design phase in order
to identify useful decomposition of the global
organization into sub-organizations.
- The preliminary roles model that captures the
basic skills required for different types of agents to
reach the organization goals. At this stage, Gaia’s
notion of roles is abstract from any mapping into
agents (this issue will be considered in the design
phase) and the analyzer have to avoid the imposition
of a specific organizational structure.
- The preliminary interaction model that captures
the basic needed interactions from the identified
preliminary roles. Also this model, possibly not
being completely defined, must abstract away from
the organizational structure.
- The organizational rules that govern the
organization in its global behavior. Such rules
impose constraints on the execution activities of
roles and protocols. Moreover, they are fundamental
to efficiently specify the openness and the general
behavior of the developing MAS.

The output of the analysis phase consists of three
basic models: (i) a preliminary roles model; (ii) a
preliminary interactions model; and (iii) a set of
organizational rules.

The design phase is aimed at producing a
complete specification of the MAS. To this end, the
design phase contemplates the following sub-phases:

Requirements statements

Organizational
Rules

Preliminary
Interaction Model

Preliminary
Role Model

Interaction
Model

Service Model

Role Model

Agent Model

A
N

A
LY

SI
S

FH
A

SE
D

ES
IG

N
 F

H
A

SE

Catalogue of
Organizational

Patterns

Organizational
Structure

- Definition of the overall organizational structure
considering the organizational rules. At this stage it
is important to exploit well-known organizational
patterns that may also influence the design of the
final interactions model.
- Considering the adopted organizational structure
a revision and completion of the preliminary role
and interaction models.
- Definition of the agent model specifying agent
types (a set of agent roles) and agent instances.
- Definition of the services model which specify
the main services (blocks of activities with their
conditions) related with the agent roles.

The specification of agents with their roles and
the interactions among them and with the
environment, are not enough to capture the complex
and emergent behavior derived from many self-
interested agents applications. For this reason, Gaia
spent additional effort in modeling the
organizational structure as well as the organizational
rules. Those aspects, as already stated in section 2,
are very relevant in order to specify open MAS.

4 INTEGRATING AUML INTO
GAIA

Different attempts in the past few year have tried to
extend UML notation for agent-based systems one
of them is Agent UML (AUML). AUML is not per
se a thorough methodology, however it builds on the
acknowledged success of UML in supporting
industrial-strength software engineering.

The core part of Agent UML is the Agents
Interaction Protocol (AIP), that constitute a central
aspect for open MAS, specified by means of
protocol diagrams. Protocol diagrams extensions to
UML include agent roles, multithreaded lifelines,
extended message semantics, parameterized nested
protocols, and protocol templates.

Still, the key ideas of AUML that may be
integrated into Gaia methodology are:
- The protocol can be regarded as a whole entity
(expressed by mean of an enriched sequence
diagram) and treated as a package. AUML considers
an AIP as a template, whose parameters may be
roles, constraints, and communication acts. This
template approach expresses in a more compact way
and UML-like notation the same semantics of the
Gaia protocol notation, but it is easier to visualize.
- Each protocol implies inter-agent interactions
that are described using sequence diagrams, activity
diagrams, and statecharts. AUML extends sequence

EXPERIENCING AUML IN THE GAIA METHODOLOGY

285

diagram notation in order to represent Agents (and
eventually their Class) and their Roles, and to
support concurrent threads of interactions. The
activity diagram, particularly useful for complex
interaction protocols that involve concurrent
processing, and statecharts are used to specify the
internal behavior of an agent.

AUML proposes other extensions to UML such
as packages with agent interfaces, deployment
diagrams indicating mobility, emergence, etc.
However, those notations are less richer than those
proposed for AIP and some of them are poor
compared to Gaia notations. For example, the role
specification in Gaia is more expressive, formal and
includes more relevant aspects (permissions and
responsibilities) than AUML proposal.

Moreover, AUML does not cover all the
abstractions proposed by Gaia. Specifically, AUML
(Parunak and Odell 2002) offers a rather poor
notation in covering the organizational structures
and does not consider the organizational rules. Thus,
it presents some barriers to adapt to complex and
open systems with self-interested behavior.

4.1 The Agents marketplace modeled
in Gaia + AUML

In this section the illustrating example of Agents
Marketplace is specified using Gaia and replacing
the preliminary interaction model with the AUML
notation. For space reasons we present just a few
examples for each model of the analysis phase in
which it is possible to appreciate the main benefits
of the integration.
The Organization
In the example of the agents marketplace, the need
to request goods or services usually implies the
request for a set of offers by sellers, and receipt of
the offers, and the evaluation by the buyer, after
which the service provision is assigned to the
winner. Such a solution can be easily delegated to a
MAS with the same organizational structure.
However, it could also be possible to adopt a
different structure. For instance, to improve
efficiency one can adopt a descending price auction
for requesting services at the best price. The choice
for an auction-based negotiation requires re-thinking
the organizational structure and, for instance,
introduces the need for agents to interact with the
mediation of an auctioneer in charge of enacting
negotiation rules. Moreover, it is possible to
conceive several interacting organizations to co-exist
in a marketplace. For example, one could think of
two separated organizations: one for dealing with the
contracting phase and another for dealing with the
subsequent payment and delivery phases. In the

next, we pay attention just to the organization for
dealing with the contracting phase.
The Preliminary Role Model
In the agents marketplace example, it is possible to
identify five possible roles corresponding to three
classes of agents: Client and Bidder (for the agents
class Buyers); Provider and Supplier (for the agents
class Sellers); and Auctioneer (for the agents class
Auctioneers, see Figure 2).

Role Schema: Auctioneer
Description: Mediator between supplier and bidder in the
“Auction ” model (the role of the agents class Auctioneers).
Protocol and Activities:
ServiceProposed, Offers,
ReceivePriceOffers, PriceEvaluation,
AcceptPrice, AskForNewBid, Inform
Permissions:
Reads offer_definition //the offer made by the seller
Changes price //the highest proposed
price
Responsibilities:
Liveness:

 Auctioneer=
(ServiceProposed.Offers.ReceivePriceOffer
s.PriceEvaluation.AcceptPrice!AskForNewBi
d)

*

Safety
 number_of_price_proposal >= 1

Figure 2: Schema for role Auctioneer

Any role schema is intended to be a semiformal
description of an agent’s behavior and specifies
permissions and responsibilities corresponding to
that role. Responsibilities may be specified in terms
of liveness (desirable) and safety (avoided
undesirable) properties expressed using regular
expressions. Those expressions include a set of
activities (actions that the agent may perform
without any interaction with other agents) and
protocols (activities that do require interaction
among agents). For example, in Figure 2 an
Auctioneer needs to access the offer presented
by a seller and to propose the seller the highest price
offered by bidders, as stated in its permissions. The
liveness expression, that may occur 0 or more times,
specifies that whenever the Auctioneer receives a
proposition of a service (by means of the
ServiceProposed protocol), then Offers this
proposition to Bidders,
ReceivePriceOffers from Bidders, and
then may AcceptPrice or AskForNewBid. The
safety expression states that the Auctioneer
needs at least one price proposal.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

286

The preliminary interaction mode
This model consists of a set of p
one for each protocol of each r
More attention is paid to the nat
the interaction than to the sequ
steps. In fact, the protocol defin
high-level purpose of the p
implementation details such as
messages exchanged. In partic
definition is a simple table
initiating the protocol, the ro
responding to it, the input and
processed in the protocol, as we
description of the type of info
taking place during the execution

The proposed notation of Ga
quite informal. Thus, instead of
we introduce the use of AIP no
AUML. This implies that a
described as a sequence of ac
interactions and may contain
protocols as defined in Gaia. In th
considered two protocols for the
for the "Wanted Request" mode
"Auction" model. For space reas
the packagefor "Auction" protoc
avoiding the activity diagram and

It states that when the Su
service, the Auctioneer offers
looking for the best price. Meanw
present a price offer or may info
that he has not understood the
Auctioneer has evaluated the pri
informing the Supplier, or reject
bid.

izational Rules

EXPERIENCING AUML IN THE GAIA METHODOLOGY
l The Organ
Figure 3: The Auction model protocol
rotocol definitions,
ole in the system.
ure and purpose of
ence of execution
ition describes the
rotocol, ignoring
 the sequence of
ular, the protocol
detailing the role
le in charge of

output information
ll as a brief textual
rmation processing
 of this protocol
ia for protocols is
 the Gaia notation,
tation proposed by
protocol must be
tions and message
a set of atomic
e example we have
contract phase: one
l and one for the

ons we present just
ol (see Figures 3),
 statechart.
pplier proposes a
it to the Bidder
hile, a Bidder may
rm the Auctioneer

proposal. Once the
ce it may accept it,
 it asking for new

Gaia considers the Organizational Rules in a
perspective that is coherent with responsibilities
characteristics of roles but referred to the
organization as a whole. Accordingly, it is possible
to distinguish between safety and liveness
organizational rules. As an example of a safety rule,
the Auctioneer cannot participate as a Bidder in an
auction it is moderating:

⌐Auctioneer (offers (x)) ⎜ Bidder (offers (x))

Also, in the case of a negotiation based on the
English auction mechanisms, bidder agents must not
be allowed to interact directly with the seller, so as
to avoid collusions aimed at artificially heightening
the selling price of a good.

4.2 Discussion

A possible weakness of Gaia is the notations it
proposes and, among them as pointed out in (Sturm
and Shehory, 2003), specifically that related to the
protocol model. In fact, the proposed notation
considers all the relevant aspects of a protocol but
may be too extensive to specify (one model for
every interaction), and it is quite informal and not
based on a standard accepted by industry.

As previous section highlights, the integration of
AUML within Gaia leads to a richer notation for the
specification of protocols and inter-agent
interactions since the AUML notation introduces
different advantages. First, it specifies a
distinguished set of agent instances satisfying the
agent role and class it belongs to; while Gaia just

287

specifies the role. Second, it is more compact
specifying in a single diagram a sequence of actions
and messages interactions which may contain a set
of atomic protocols as defined in Gaia. Third,
AUML is more formal and let to specify the time
ordering of messages between agents. Finally,
AUML notation introduces the opportunity for
agents to select a path in the interaction according to
their goals. The latest two aspects are described in
Gaia using natural language and so introducing
possible ambiguities and misunderstandings.

5 RELATED WORK

Other attempts to extend Gaia for better modeling
open MAS include Roadmap (Juan et al., 2002) and
Skeleton (Juan et al., 2003) methodologies.

The Roadmap methodology aims to support the
engineering of large-scale open systems promoting
the view of software systems as computational
organizations. Roadmap extends the Gaia
methodology by introducing use-cases for
requirement gathering, explicit models of agent
environment and knowledge, and an interaction
model based on AUML interaction diagrams (Juan
et al., 2002). However, the interaction model
proposed is just a statement without further details
or examples and it seems to be an interesting
possible idea more than a real conceptualized model.
For this reason, it is quite unclear for designers how
to accomplish this integration.

The Skeleton methodology proposes an
integration of the common elements identified from
Prometheus (Padgham and Winikoff, 2002) and
Roadmap. It inherits from Roadmap the interaction
model with its advantages and the same drawbacks
mentioned above.

6 CONCLUSIONS AND FUTURE
WORKS

This work proposes the integration of AUML within
the Gaia methodology to improve modeling of open
MAS. Specifically, we replaced the protocol model
of Gaia with the Agents Interaction Protocol (AIP)
of AUML, specified by means of protocol diagrams.
This extensions to UML enrich Gaia in four main
aspects: (i) a richer notation for specifying agent
instances of a particular class satisfying the agent
role; (ii) a more compact notation that represents in a
single diagram a sequence of actions and message
interactions; (iii) a more formal notation that reduces
possible ambiguities and allows to specify messages

between agents; and (iv) multithreaded lifelines that
permit agents to select a path in the interaction
according to their goals.

Moreover, AUML builds on the acknowledged
success of UML in industrial software engineering
and it is reasonable to think that it may reduce the
distance between researchers’ proposals and industry
practices. Nevertheless, the main pitfall in using
Gaia integrated with AUML to design MAS in an
industrial environment is that there are no CASE
tools available which implement this methodology.

REFERENCES

Caire, C., Garrijo, F., Gómez, J., Pavón, J., Leal, F., et al.,
“Agent oriented analysis using MESSAGE/UML”.
Proceedings of Agent-Oriented Software Engineering
– AOSE 01, Montreal Canada, May, 2001

Giunchiglia, F., Mylopoulos, J., and Perini A., “The
Tropos Software Development Methodology:
Processes, Models and Diagrams”, Proceedings of
Agent-Oriented Software Engineering (AOSE-2002),
Bologna, Italy, July 2002

Juan, T., Pearce, A. and Sterling, L., “ROADMAP:
Extending the Gaia Methodology for Complex Open
Systems”. Proceeding of Autonomous Agents and
Multi-Agent Systems - AAMAS ’02 (pp. 3-10),
Bologna, Italy, July 15-19, 2002

Juan, T., Sterling, L. and Winikoff, M., “Assembling
Agent Oriented Software Engineering Methodologies
from Features”. Autonomous Agents and Multi-Agent
Systems-AAMAS‘03, Melbourne, Australia, July, 2003

Odell, J., Parunak, H. v. D., and Bauer, B., “Extending
UML for Agents”. Proceedings of Workshop on Agent
Oriented Information Systems – AOIS 2000, Austin,
USA, 2000

Padgham, L. and Winikoff, M., “Prometheus: A
Methodology for Developing Intelligent Agents”.
(poster) Proceedings of Autonomous Agents and
Multi-Agent Systems - AAMAS ’02 (pp. 3-10),
Bologna, Italy, July 15-19, 2002

Parunak, H. v. D., and Odell, J., “Representing Social
Structures in UML”. In: Wooldridge M., et al. (eds.):
Agent Oriented Software Engineering – AOSE II (pp.
1-16), Springer-Verlag, Berlin, Germany, 2002

Sturm, A. and Shehory, O., “A Framework for Evaluating
Agent-Oriented Methodologies”. Agent Oriented
Information Systems – AOIS 2003 at AAMAS ‘03,
Melbourne, Australia, July 14, 2003

Zambonelli, F., Jennings, N., and Woolddridge, M.,
“Developing Multiagent Systems: the Gaia
Methodology”. ACM Transactions on Software
Engineering and Methodology, 12(3) (pp. 417-470),
July 2003.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

288

