
TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY
SYSTEM INTEGRATION

Guido Menkhaus
Software Research Lab, University of Salzburg

Austria

Urs Frei
University of Applied Science, St. Gallen

Switzerland

Keywords: Legacy System, Integration, Transformation System, Grammar, Middleware.

Abstract: Most established companies have acquired legacy systems through mergers and acquisitions. The systems
were developed independently of each other and very often they do not align with the evolving IT infrastruc-
ture. Still, they drive day-to-day business processes. Replacing the legacy application with new solutions
might not be feasible, practical or cost a considerable amount of time. However, immediate integration might
be a requirement for a strategic project, such as supply chain management or e-business. This article presents
a transformation system for legacy system integration that allows flexible and effective transformation of data
between heterogeneous systems. Sequences of transformations are described using a grammar based approach.

1 INTRODUCTION

Supply chain management helps companies in con-
trolling the flow of information and goods within their
network of suppliers and customers by providing a
full view on what happens in the network (Hieber,
2002; St”or et al., 2003). But before extending op-
eration management beyond the company’s wall and
integrate companies’ suppliers and customers into a
single information network, the company’s own op-
erations must run smoothly towards cooperation and
collaboration. This involves the integration and inter-
operability of different corporate databases, applica-
tions, and more and more often of legacy systems,
acquired through mergers and acquisitions. These
legacy systems produce structured or semi-structured
data that add to the vast amounts of data that a com-
pany generates every day. This data needs to be com-
municated between heterogeneous systems within the
same company and eventually beyond the company’s
walls. Transformations of communicated data are re-
quired to enable companies to tightly integrate their
systems into a cohesive infrastructure without chang-
ing their applications and systems(DataMirror, 2001).

This article presents a legacy system data inte-
gration middleware that allows flexible and effective
transformation of data between heterogeneous sys-
tems. Our data integration middleware provides a
transformation system in which transformation se-

quences are described based on the grammar of the
format of the source and the target data. It provides
direct integration of applications and systems at the
data level.

The remainder of the article is structured as fol-
lows: The motivation of this work is discussed in
Section 2. Section 3 provides a brief overview about
transformation systems. Section 4 describes strate-
gies for legacy system integration and migration. Sec-
tion 5 illustrates a use-case scenario for the legacy
system data integration middleware. The architecture
of the system is presented and discussed in Section 6.
Section 7 concludes the article with a brief talk about
our future research directions and work.

2 MOTIVATION

For companies to stay competitive, they must be able
to interconnecting seamlessly their database, applica-
tions and legacy systems into an coherent IT infras-
tructure. However, heterogeneous systems including
legacy systems, acquired through mergers and acqui-
sitions, may not exchange data so easily. These sys-
tems produce data in different formats using differ-
ent description languages, such as comma-separated-
value lists or text-based proprietary formats. To com-
municate data from one system using a format A to a
different system using format B, we need to transform

202
Menkhaus G. and Frei U. (2004).
TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY SYSTEM INTEGRATION.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 202-209
DOI: 10.5220/0002618702020209
Copyright c© SciTePress



Legacy System Database

IT Infrastructure
System A

IT Infrastructure
System B

Figure 1: Application scenario: Integration of legacy systems.

the data, control that data and ensure that the transfor-
mation from format A to format B is correctly carried
out.

Transforming data is usually done by writing cus-
tom programs (Fiore, 1998). However, if either the
format of the source data or the target data changes,
the custom programs need to be rewritten. Adapting
to frequent changes results in high maintenance costs.
There are systems that allow data integration. For ex-
ample, relational databases allow the integration of
comma-separated-value lists. However, this integra-
tion has limitations. The data is imported into a sin-
gle database table, which need to be further processed
internally, to integrate the data into different tables.

To integrate legacy system data we need middle-
ware that provides the following features:

1. Adaptation: The way data is processed and stored
is diverse and might be subject to changes. If the
format of the source data or the target data in a
transformation sequence changes, quick adaptation
to the transformation sequence is essential to sus-
tain system interconnection.

2. Control: When data is transformed while commu-
nicated between two systems, data might need not
only change the format but the target system might
require the data to change, to be enriched, filtered,
and modified.

3. Format Guarantee: The transformation sequence
guarantees that the data results in a specified for-
mat. The specified target structure of the data is
produced, because the transformation is generated
based on the structure of the target format described
by a grammar.

We present a grammar-based transformation sys-
tem, in which the transformation sequence is gener-
ated originating from a set of grammars describing the
target formats of each transformation step. Semantic
controls need to be programmed manually. The sys-
tem provides means to integrate them into the trans-
formation sequence. Adaptation is accomplished by
respecifying the grammars of the data formats.

3 SHORT OVERVIEW OF
TRANSFORMATION SYSTEMS

Transformation systems transform elements of a
source language into elements of a target language.
The source and the target language can be very dif-
ferent from one another (Winter, 1999). Partsch and
Steinbruggen classify transformation systems into
manual, semi-automatic, and automatic transforma-
tions (Partsch and Steinbruggen, 1983).
• Manual: In manual transformation systems, the

user chooses from a predefined set of transforma-
tions those, which the user wants to apply to the
source language. Manual transformation systems
provide an environment that puts the user in the po-
sition to use transformations more effectively than
the current programming paradigm that requires s
programmer to manually code a transformation.

• Semi-automatic: The objective of semi-automatic
transformation systems is to automate the process
of transforming and to minimize the intervention
of the user. Although the major decisions will still
be made by the user.

• Automatic: The intent of automatic transformation
system is to fully automate the transformation pro-
cess.

The class of problems that can be solved using man-
ual transformation systems is the largest, since most
transformation solutions require insight in the prob-
lem domain and decision taking that is beyond what
automation techniques can do. Semi-automatic sys-
tems need a restricted problem domain where diffi-
cult decisions about transformation configuration do
not occur and transformations can be generated auto-
matically. Most limitations are in the automatic trans-
formation system class, where the system selects on
the basis of a knowledge base the transformation se-
quence. However, the system can only be as good as
the programmer has designed the knowledge base.

Restated from a different viewpoint, Partsch and
Steinbruggen divide transformations in (Partsch and
Steinbruggen, 1983) into two types of processes: pro-
cedural and schematic.

TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY SYSTEM INTEGRATION

203



Transformation
System
Engine

Target Data
Grammar

Source Data
Scanner
Parser

Transformation
Generator

Target
Transformation

Generator

Source Data
Semantic Analysis

Source Data
Grammar and

Lexical Analysis
Specification

Transformation
Grammar

Set of
Transformations

Figure 2: Transformation System Architecture.

• Procedural: Procedural transformations specify se-
mantic rules that can be applied globally to the en-
tire source data. They include consistency checks
and analysis tasks.

• Schematic: Schematic transformations are syntax-
oriented and make local changes to the source data.

It should be noted that global, procedural trans-
formations can be accomplished by schematic pro-
cesses, but that the required transformation might be-
come arbitrary complex. Complex rules are better ex-
pressed applying procedural than schematic transfor-
mations (Winter, 1994).

In this paper, we present a transformation system
that is semi-automatic. The automatic part of the sys-
tem is schematic-based and syntax-oriented. The pro-
cedural part of the transformation consists of semantic
analysis and actions, which are applied to the entire
source data.

4 LEGACY SYSTEM
INTEGRATION AND
MIGRATION

Legacy systems are generally defined as ”any in-
formation systems that significantly resist modifica-
tion and evolution” (Brodie and Stonebraker, 1995).
Legacy systems still drive day-to-day business pro-
cesses (IBM, 2003). Migrating the application, i.e.
replacing the legacy systems with new solutions,
might not be feasible, practical or costs a considerable
amount of time. The legacy systems may operate in
business critical processes and immediate integration

might be a requirement for a strategic project, such
as supply chain management or e-business. Legacy
system integration deals with accessibility and avail-
ability of data, in a way that legacy systems align with
the new IT infrastructure.

Bateman and Murphy propose the forward and
reverse migration methods for legacy system inte-
gration and eventually migration (Richardson et al.,
1997). We follow their line of argument:

• Forward Migration: Forward migration integrates
the legacy system into the new IT infrastructure be-
fore it attacks its migration. It integrates the legacy
system by transforming and continually importing
legacy data to a relational database. It then in-
crementally migrates the legacy system’s interfaces
and business processes. While the application is
being redeveloped, the legacy system interoperates
with the new IT infrastructure using transforma-
tion oriented middleware that operates as a gate-
way (Wu et al., 1997). The middleware translates
and transforms the legacy system’s data and im-
ports them into the database.

• Reverse Migration: Reverse migration gradually
redevelops the legacy system and integrates the
new applications as soon as they are capable of
partly or completely replacing the legacy system.
During the redevelopment phase, the legacy system
remains operable on the original platform.

Forward migration might results in a longer transi-
tion phase, because migration consists in a migration
and an additional integration step. Reverse migration,
however, blocks further progress in other areas while
the legacy system is being redeveloped. Is progress a
mission critical issue, reverse migration is not an op-

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

204



tion.
The transformation-oriented middleware proposed

in this article is a part of a forward migration approach
for legacy system integration.

5 APPLICATION SCENARIO

The transformation system was designed as middle-
ware for the integration of legacy systems. This sec-
tion outlines in brief a pratice area, which demon-
strates the value of our transformation system.

A company requires integrating a legacy system
into its new IT infrastructure (Figure 1). The legacy
system’s integration is accomplished via a central
database, which is used by various systems. The
legacy system’s output data is in a proprietary format,
and the data needs to be imported into a variety of
database tables. The database configuration was de-
signed with respect to the new IT infrastructure and
the legacy system must adapt and integrate to the new
structure.

In our application scenario, the legacy system pro-
duces data as comma-separated-value lists. This data
is checked and verified, transformed into an internal
and intermediate XML format, and finally imported
into the database.

6 ARCHITECTURE OF
TRANSFORMATION SYSTEM

The architecture of the transformation system is il-
lustrated in Figure 2. The transformation system
runs a sequence of transformations, in which source
data complying with a source data grammar is trans-
formed into target data described by the target gram-
mar. The schematic part of each transformation se-
quence is generated using parser and transformation
generating systems. The procedural aspect is manu-
ally programmed and integrated in the schematic part.

Each transformation in a sequence consists of three
intermediate subtransformations:

1. Source Grammar Driven
2. Configuration Driven
3. Target Grammar Driven

Source Grammar Driven Subtransformation
The source grammar driven (SGD) transformation
consists of the following four processes:

1. Lexical Analysis: The lexical analysis is done us-
ing a scanner component. The scanner is generated
on the basis of a lexical analysis specification of
the source data and produces a sequence of tokens.

A token is a syntactically structures symbol, whose
structure is described in the lexical analysis speci-
fication.

2. Syntactic Analysis: The sequence of tokens pro-
duced by the scanner is forwarded to the parser,
which verifies the structure of the source data
against the source data grammar. We use an at-
tributed grammar, which can be seen as dynamic
description of a transformation process, i.e. a
syntax-driven algorithm.

3. Semantic Analysis: The semantic analysis checks
local and global context conditions, during the syn-
tactic analysis phase.

4. Transformation: The transformation converts the
data that has passed the syntactic and semantic
analysis into an internal, intermediate format.

We use CoCo/R (M”ossenbeck, 1990) as transforma-
tion tool. The lexical analysis specification is de-
scribed by regular expressions. The attributed gram-
mar of the source data is defined in EBNF.

Attributed grammars were introduced by Knuth
in (Knuth, 1968) to formalize the semantics of
context-free languages. They describe in their origi-
nal form dependencies between attributes of symbols,
originating from the lexical analyzer. However, at-
tributed grammars can be seen as a dynamic descrip-
tion of a process, i.e. as a syntax directed algorithm.
The structure of the source data determines the order
of the global semantic analysis and the local transfor-
mations.

Configuration Driven Subtransformation A cru-
cial part of the transformation system is the config-
uration driven subtransformation (CD). The transfor-
mation system contains a set of CD types with asso-
ciated configurations for different target data formats.
The CD transformation is an intermediate transforma-
tion that functions as a bridge. It decouples the source
data grammar from the target data grammar so that the
two can vary independently. This avoids a binding be-
tween the associated transformations and allows flex-
ible adaptation in case of a modification or extension
of the source or the target data grammar.

Target Grammar Driven Subtransformation The
target grammar driven (TGD) transformation is gen-
erated from the target data grammar. It takes the data
from the CD transformation and generates data in the
target grammar format.

Since the transformation is produced from the tar-
get grammar, the transformation system guarantees
that the data results in the specified format.

TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY SYSTEM INTEGRATION

205



Legacy data
Transformation Transformation Database

XML
Transformation

Figure 3: Transformation Sequence for Legacy System Integration.

6.1 Legacy System Integration

In the application scenario we take the data from
the legacy system and import the data into a central
database.

The transformation system applies a sequence con-
sisting of two transformations. The first transforma-
tion converts the legacy data into XML format while
verifying the data during the SGD subtransformation.
The second transformation parses and processes the
data and imports them into the database.

6.1.1 Token-XPath Matrix

The first transformation converts the legacy system’s
proprietary data format into an intermediate format.

In the SGD subtransformation, the scanner and
parser are generated and perform a syntax check on
the source data. The semantic verification (in our ap-
plication scenario suppression of duplicate data en-
tries in the source data) is manually programmed and
integrated into the generated parser.

The CD subtransformation determines where data,
originating from a token produced by the scanner
component and semantically checked and converted
during the semantical analysis, is inserted into the
resulting XML document, serving as an intermedi-
ate data format in the transformation sequence. This
is performed applying a Token-XPath-Assigment ma-
trix (TXPA matrix) MTX = T ×X , which consists of
the tokens symbols T of the source data grammar and
the target data grammar XML elements, expressed as
XPath elements X .

The target grammar is presented as a XML
Schema. The target grammar driven subtransforma-
tion is generated using JAXB (SUN Microsystems,
2003), which generates a suite of hierarchical classes
that produces an XML document complying with the
XML Schema. This suite of classes is subsequently
used by the CD and the TGD transformation. They
represent an interface that both transformations apply
in cooperation using introspection.

The intermediate (CD) subtransformation decou-
ples the source and the target grammar driven sub-
transformation (Figure 4). If the source or the tar-
get grammar is modified or the semantic analysis
changes, only the TXPA matrix needs to be adapted.
This makes the transformation system flexible and ro-
bust in the case of changes.

6.1.2 XPath-Database Configuration

The second transformation imports the data from the
XML document into a database. Most databases al-
low importing XML data, or comma-separated vaue
lists. However, data can only be inserted into a single
table, and most often this data requires further pro-
cessing such as splitting the data and distributing the
data among several database tables.

The SGD transformation is accomplished employ-
ing an XML parser. The CD and the TGD transforma-
tions use OJB (The Apache DB Project, 2003). OJB
generates a set of classes on the basis of a database de-
sign allowing transparent persistent mapping of Ob-
jects against relational databases. It allows storing
objects, or part of an object in relational databases,
and reading data from a relational database into the
generated object structure.

The grammar oriented transformation needs to re-
work the data from an XML into a OJB object repre-
sentation. The OJB object structure is then imported
into the database (Figure 5).

The objective of the CD transformation is to remain
independent from the grammar of the source XML
document and the target configuration of the database.
We need to take into account the following require-
ments:

1. Specification of a mapping between XML elements
and OJB objects.

2. Instantiation of OJB objects creating a new dataset.

3. Relations between the OJB objects.

4. Processing of duplicate datasets. Duplicates are al-
ready filtered out in the first transformation. How-
ever, at this stage we cannot detect duplicates,
which might occur during the reordering of the data
in the second transformation, nor can we detect du-
plicates that are already in the database.

5. Declaration of an import sequence to prevent pri-
mary key violation.

We have developed XML2OJB, a mapping from
XML documents to OJB object structure (Ap-
pendix A). It allows flexible, adaptable, and inde-
pendent import of arbitrary structured XML data into
arbitrary database table configuration.

Appendix A shows part of an example where an
XML address list is inserted into a database. The
XML2OJB configuration is divided into five parts.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

206



Source Data SGD
Transformation

CD
Transformation

TGD
Transformation

XML

Source Data
Grammar

TXPA
Configuration

XML Schema

Figure 4: Transformation from legacy data to XML.

XML SGD
Transformation

CD
Transformation

TGD
Transformation

XML Schema
XML2OJB

Configuration
OJB

Database

Figure 5: Import from XML into a database.

• ClassDefinition: The ClassDefintion section de-
fines the objects that are imported into the database.
These objects are instantiated and the attributes are
set using the methods specified in the SetMethod
element. Aliases are declared, which are later used
in the SourceDocument section.

• Assembly: The Assembly section defines the be-
havior when importing a new data record. The Re-
peat element specifies the start of a new data record
in the XML document. The Insert element speci-
fies where the data is set in the OJB objects, and the
CreateObject element defines the objects that are
required to be instantiated.

• DuplicateRecord: The Duplicate Record section
specifies the element that functions as autokey. The
specification of an autokey is necessary to avoid du-
plicate entries in database tables.

• ImportSequence: The ImportSequence section de-
termines the sequence in which the objects import
their data into the database.

• SourceDocument: The SourceDocument element
declares where to find the necessary information in
the XML source document.

The TGD transformation consists of importing the set
of OJB classes into the database. The process is con-
figured using a specific OJB configuration file.

7 CONCLUSION

We have presented a transformation system that man-
ages sequences of transformation. Each transforma-
tion of a sequence consists of three subtransforma-
tions and is grammar driven. The source grammar
driven subtransformation converts data into an inter-
mediate format. The inner subtransformation is a
bridge between the data represented in source and tar-
get format. The target grammar driven transformation
converts the data from the intermediate format into
the resulting target format. The introduction of an in-
termediate transformation allows the source and the
target grammar to vary independently.

Currently, there are two transformation configura-
tions. The TXPA matrix maps a sequence of tokens
onto XML elements. The XML2OJB configuration
maps XML elements to OJB objects, which can be
imported into a relational database. The XML2OJB
transformation proved to be successful due to its flex-
ibility. The architecture of the transformation system
represents a viable solution to systems that require
frequent reconfiguration and maintenance.

Future work will focus on extending the set of pre-
defined transformations. We will continue working
on fault tolerance and error recovery within a single
transformation.

REFERENCES

Brodie, M. and Stonebraker, M. (1995). Migrating Legacy
Systems Gateways, Interfaces and the Incremental Ap-

TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY SYSTEM INTEGRATION

207



proach. Morgan Kaufman.

DataMirror (2001). Managing your data the XML way:
Data transformation, exchange and integration.

Fiore, P. (1998). Data Warehousing. Evolving Enterprise,
1(1).

Hieber, R. (2002). Supply Chain Management. A Col-
laborative Performance Measurement Approach. vdf
Hochschulverlag, Zürich, Switzerland.

IBM (2003). IBM Legacy Transformation Services. Tech-
nical report, IBM.

Knuth, D. (1968). Mathematical System Theory 2, chapter
Semantics of Context-Free Languages, pages 127 –
145. D.E. Knuth.

M”ossenbeck, H. (1990). A Generator for Fast Compiler
Front-Ends. Technical Report Report 127, Institut für
Computersysteme, ETH Zürich.

Partsch, H. and Steinbruggen, R. (1983). Program Trans-
formation Systems. ACM Computing Surveys, 15(3).

Richardson, R., Lawless, D., Bisbal, J., Wu, B., Grimnson,
J., and Wade, V. (1997). A Survey of Research into
Legacy System Migration. Technical Report TCD-
CS-1997-01, Computer Science Department, Trinity
College Dublin.

St”or, M., Birkeland, N., Nienhaus, J., and Menkhaus, G.
(2003). IT Infrastructure for Supply Chain Manage-
ment in Company Networks with Small and Medium-
sized Enterprises. In Proceedings of the 5th Interna-
tional Conference of Enterprise Information Systems,
volume 4, pages 280 – 287, Angers, France.

SUN Microsystems (2003). Java Architecture for XML
Binding (JAXB).

The Apache DB Project (2003). Object/Relational Bridge
(OJB).

Winter, V. L. (1994). Proving the Correctness of Program
Transformations. PhD thesis, University of New Mex-
ico.

Winter, V. L. (1999). Program Transformations in HATS. In
Proceedings of the Software Transformation Systems
Workshop, California, USA.

Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wade, V.,
O’Sullivan, D., and Richardson, R. (1997). Legacy
System Migration: A Legacy Data Migration Engine.
In Experts, C. C., editor, 17th International Database
Conference, pages 129 – 138, Brno, Czech Republic.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

208



A XML2OJB Mapping

<XML2OJB>
<ClassDefinition>

<Class Name="addressDB.Adress">
<SetMethod Alias="lastName">setLastName</SetMethod>
<SetMethod Alias="addressPlace">setAdressPlace</SetMethod>

</Class>
<Class Name="addressDB.Place">

<SetMethod Alias="place">setPlace</SetMethod>
<SetMethod Alias="postalCode">setPostalCode</SetMethod>

</Class>
</ClassDefinition>

<DuplicateRecord>
<AutoKey>email</AutoKey>

</DuplicateRecord>

<Assemblies>
<Repeat Name="/organisation/person">

<Insert In="addressPlace" ObjectToAdd="addressDB.Place"/>
<CreateObject>addressDB.Adress</CreateObject>
<CreateObject>addressDB.place</CreateObject>

</Repeat>
</Assemblies>

<ImportSequence>
<Class>addressDB.Adress</Class>
<Class>addressDB.Place</Class>

</ImportSequence>

<SourceDocument>
<element xpath="/organisation/person/LastName"/>
<element xpath="/organisation/person/Place"/>

</SourceDocument>
</XML2OJB>

Figure 6: Configuration for mapping a XML document onto an OJB object structure.

TRANSFORMATION-ORIENTED MIDDLEWARE FOR LEGACY SYSTEM INTEGRATION

209


