
CORRELATING EVENTS FOR
MONITORING BUSINESS PROCESSES

Josef Schiefer
IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY, 10606, US

Carolyn McGregor
Centre for Advanced Systems Engineering, University of Western Sydney,

Locked Bag 1797, Penrith South DC, NSW, 1797, Australia

Keywords: Event Stream Processing, Event Correlation, Business Process Monitoring

Abstract: With the increasing demand for real-time information on critical performance indicators of business
processes, the capturing, transformation and correlation of real-world events with minimal latency are a
prerequisite for improving the speed and effectiveness of an organization's business operations. Events often
include key business information about their relationship to other events that can be utilized to collect
relevant event data for the calculation of business performance indicators. In this paper we introduce an
approach for correlating events of business processes that uses correlation sessions to represent correlation
knowledge. Correlation sessions facilitate the processing of data across multiple events and thereby enable a
calculating of business metrics in near real-time. The benefit over existing approaches is that it is tailored to
instrument business processes and business applications that may operate in a heterogeneous software
environment. We propose a Java-based, container-managed environment which provides a distributed,
scalable, near-real time processing of events and which includes a correlation service that effectively
manages correlation sessions. We also show a complete example that illustrates how correlation sessions
can be utilized for computing the cycle time of business processes.

1 INTRODUCTION

Operational business systems, such as enterprise
resource planning systems or workflow management
systems (WFMSs) are able to report business
process state changes, such as the execution of
business operations or the completion of customer
requests, which can be utilized for monitoring and
analysis purposes. Today’s e-business platforms
suffer from inappropriate management of these
events. The symptoms of exceptional business
situations are frequently detected by many managed
applications simultaneously causing them to
generate events. Event correlation in the business
domain is a technique for collecting and isolating
related data from events so as to condense many
events each with little information into a few
meaningful business metrics. By automatically
correlating events and calculating business metrics

from the correlated event data, business managers
and staff members can monitor these metrics and
quickly respond to exceptional business situations.

Many business processes are executed in a
distributed environment where a large number of
events are generated and processed in different
locations by various operational systems. When
every state change of a business process generates a
new event and an organization creates thousands of
process instances daily, a very large number of
events must be handled. For instance, an order
process with thousands of process instances can
result in potentially millions of state change events.
Therefore, a scalable solution for processing and
correlating a very large number of process events is
required.

Figure 1 shows the process for continuously
integrating events from various source systems. The
processing steps are not equivalent to the traditional

320
Schiefer J. and McGregor C. (2004).
CORRELATING EVENTS FOR MONITORING BUSINESS PROCESSES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 320-327
DOI: 10.5220/0002618403200327
Copyright c© SciTePress

ETL (Extraction, Transformation, Loading) because
the underlying assumptions for the data processing
and the latency requirements are different.
Traditional ETL tools often operate during a batch
window and do not affect or disrupt active user
sessions. If data is to be integrated continuously, a
permanent stream of data must be integrated into the
data warehouse environment while users are using it.

Figure 1 shows three stages for continuous event
data integration: 1) Receive/Extraction, 2) Event
Processing, and 3) Evaluation. A separate loading
stage is not included because event data is usually
not buffered and prepared for bulk loading. We
extend the traditional data integration process with
an evaluation stage that allows the system to respond
to conditions or irregularities in the integrated event
data. An evaluation of continuously calculated
business metrics can be very valuable to the business

because it promotes intelligent responses to business
operations and proactive notification mechanisms in
near real-time.

Dependent on the external interface capabilities
of the source systems, events are transmitted either
by push (e.g. messaging) or pull mechanisms (e.g.
J2EE connector, web-services). For the processing
of events, the following two challenges have to be
addressed in combination:

Online processing. Events are processed as
soon as they stream into the system. Therefore,
continuous data streams require light-weight data
processing of the events that were raised in the
source system and propagated in near real-time to
the data warehouse environment. The processing can
include any type of data transformation, data
cleansing, calculation or evaluation of business
metrics, and storing the metrics in a database table.
Since the data has to be integrated with minimal
delay, an architecture is needed that facilitates
streamlining and accelerates the data processing by
moving data between the different processing steps
without any intermediate file or database storage.

Event correlation. Many business metrics
require a set of related events for its calculation. The
related events often stream into the system at

different points in time. To deliver metrics with
minimal delay to business users, a mechanism to
continuously gather related event data is needed that
allows metric calculation as soon as sufficient event
data is available. A simple event correlation example
is the calculation of business activity processing
times where event pairs of when an activity started
and finished have to be collected. As soon as a
business activity completes, the processing time can
be calculated. This example requires a mechanism
for holding event data for a certain time interval.

Business process event correlation is challenging
because:
− Business process events can occur in various

source systems producing events in different
formats that must be captured with minimal
latency and minimal operational system impact.

− Late arriving events due to network failures or
downtimes of operational systems within
heterogeneous and distributed software
environments can be common situations that
have to be considered for the event correlation.

− Only relevant event data for applications and
users must be unified, transformed, and cleansed
before they are correlated. In many situations,
only a small set of selected event attributes are
needed for the correlation.

− Correlated events can occur at different points in
time requiring the temporary storage of
correlated event data that is transparent for
applications.

− Correlated business process events can be
analyzed and processed by multiple components
to calculate business metrics or to discover
irregularities in the business process.

McGregor and Schiefer (2003) introduce a
Solution Management Web Service (SMWS)
architecture that supports near real-time integration
of event data to provide involved parties and
decision makers with comprehensive information
about the status and performance of business
processes independent from the type of systems that
are used to execute the business process.

This paper, further defines the EPC processing
by defining an approach for correlating events that
overcomes the challenges detailed above. This
approach can be summarized as follows: We
propose a correlation session to gather correlated
event data that exists temporarily and have a
lifecycle. Before correlating events, event data often
has to be unified, transformed, cleaned or
condensed. Correlation sessions reduce the overall
amount of event data and condense large correlated
data sets that are only partially used for the

Figure 1: Continuous Event Data Integration

CORRELATING EVENTS FOR MONITORING BUSINESS PROCESSES

321

processing, reducing the resources required for
holding correlated data in memory or on disk. We
use a container-managed environment that
automatically manages correlation sessions which
enables scalability and significantly decreases the
effort for developers to utilize correlation sessions.

The remainder of this paper is organized as
follows. In section 2, we give an overview of
approaches for event correlation developed in the
research community and the industry so far and
discuss our contribution. In section 3, we introduce
and define correlation sessions. In section 4, we
present an architecture for a container-based
environment which allows to integrate and correlate
events from various sources and which
automatically manages the lifecycle of correlation
sessions. Section 5 shows an example of an
application that utilizes correlation sessions for
continuously calculating the cycle time of business
processes. Finally, section 6 concludes the paper.

2 THE ROLE OF CORRELATION
FOR EVENT MANAGEMENT

The emergence of e-business has forced many
organizations to improve operational efficiency,
turning their attention toward real-time business
activity monitoring (BAM) solutions. These
initiatives require enterprise data to be captured and
analyzed in real-time from a wide variety of
business applications, operational data stores and
data warehouses. While traditional data integration
approaches, built on top of core ETL (extraction,
transformation, loading) solutions are well suited for
building historical data warehouses for strategic
decision support initiatives, they do not go far
enough toward handling the challenge of
continuously integrating data with minimal latency
and implementing a closed loop for business
processes. Traditional solutions are optimized for
batch-oriented data integration and make the
assumption that large data sets can be extracted from
various source systems in order to transform and
integrate them into a data warehouse environment.
The correlation of data for these scenarios is a minor
problem since the data integration tools are always
able to access the entire data sets.

However, when it comes to continuous data
integration, where events are propagated and
processed continuously from various source
systems, event data has to be correlated in order to
be able to generate business metrics. One single
event includes very little information about the
business process and is therefore too detailed for

monitoring purposes. What is needed is more
granular business information in the form of
representative business metrics that are derived from
a set of raw events. In order to be able to transform
raw events into valuable business metrics a
correlation mechanism is needed that enables the
capture of required event data for calculating a
single business metric. The events of business
processes often have inherent dependencies that
have to be considered during the event processing.
For example, an order process might include
processing steps whose processing times are of
interest to the business. By correlating the events
that indicate when process activities started and
completed, a calculation of the processing times
becomes very straightforward.

Detecting and handling exceptional events also
plays a central role in network management
(Feldkuhn and Erickson, 1989)0. Alarms indicate
exceptional states or behaviors, for example,
component failures, congestion, errors, or intrusion
attempts. Often, a single problem will be manifested
through a large number of alarms. These alarms
must be correlated to pinpoint their causes so that
problems can be addressed effectively. Many
existing approaches for correlating events have been
developed from network management. Event
correlation tools help to condense many events,
which individually hold little information, to a few
meaningful composite events.

Rule-based analysis is a traditional approach to
event correlation with rules in the “conclusion if
condition” form which are used to match incoming
events often via an inference engine. Based on the
results of each test, and the combination of events in
the system, the rule-processing engine analyzes data
until it reaches a final state (Wu et al., 1989).

Another group of approaches incorporate an
explicit representation of the structure and function
of the system being diagnosed, providing
information about dependencies of components in
the network (Katzela and Schwartz, 1995) or about
cause-effect relationships between network events.
The fault discovery process explores the network
model to verify correlation between events.

NetFACT (Houck et al., 1995) uses an object-
oriented model to describe the connectivity,
dependency and containment relationships among
network elements. Events are correlated based on
these relationships. Nygate (1995) models the cause-
effect relationships among events with correlation
tree skeletons that are used for the correlation.

InCharge (Yemini et al., 1996) represents the
causal relationships among events with a causality
graph using a codebook approach to quickly
correlate events to their root causes. The code-book
approach uses a network model to derive a code – a

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

322

set of possible symptom observations for every
problem that may occur in the network – performed
in advance, eliminating the runtime computational
complexity involved in model traversals and is
therefore more scalable than rule-based systems.

The Streams project (Babu and Widom, 2001)
attempts to provide complete DBMS functionality
along with support for continuous queries over
streaming data. Thereby, continuous data streams
are queried by using SQL like statements to select,
group and process data stream elements. While this
approach can be used for a wide range of continuous
queries, the processing of data has to be specified in
a SELECT statement limiting developers to
implement user-defined functions for the event
processing because it is limited to the functionality
provided in SQL.

In spite of intensive research in the past years for
correlating events in the network management
domain, there are to our knowledge no existing
approaches addressing the issues for correlating
business process events. In this paper, we propose a
container-based architecture to integrate business
process events in near real-time. We introduce the
concept of correlation sessions for collecting related
event data, and show how a container environment
can be used to effectively manage their lifecycle.

3 CORRELATING EVENTS WITH
SESSIONS

The “instant” of an event is relative to the time
granularity that is needed or desired. Thus, certain
activities that are of short duration relative to the
time granularity are represented as a single event.
An activity spanning some significant period of time
is represented by the interval between two or more
events. For example, an order review might have a
“begin-review” and “end-review” event-pair.
Similarly, a workitem in a workitem list could be
represented by the three events “enter-worklist”
“start-processing” “end-processing”.

For purposes of maintaining information about
an action, events can also capture attributes about
the context when the event occurred. Event
attributes are items such as the agents, resources,
and data associated with an event, the tangible result
of an action (e.g., the result of an approval decision),
or any other information that gives character to the
specific occurrence of that type of event.

Elements of an event context can be used to
define a relationship with other events. This
relationship can be expressed by a correlation
expression that is used to create a container for a set
of correlated event data. We label the container for

holding this set of correlated event data as
correlation session. In other words, a correlation
session is a container with a set of data items that
exists for each relationship between events.

Therefore, we define a correlation session CS as
a triple of the form (O, X, A) where O defines the
owner, X the correlation expression and A the
correlating event attributes for the session. For a
given event stream a correlation session is created
for each unique set of event attributes A = { A1, …
An } that is extracted by a correlation expression X
during the event arrival. X is an expression that
selects attributes from incoming events and uses
these attributes as key for the correlation sessions. A
correlation session is a container for a set of data
items D = {D1, …, Dn} which can originate from
event attributes or from other sources. Every
correlation session has an owner O which is a
component that is allowed to utilize the session. This
component can be called in multiple threads in
parallel and each thread can read or updated the
correlation session.

Figure 2 shows an event stream with events that
include an attribute A1. Let’s assume that we use the
attribute A1 for correlating the events. In this case,
we will create a separate correlation session for each
different value of the attribute A1. For instance, in
Figure 2 Session 3 is correlated with all events that
have an attribute A1 with the value 4.

Figure 2: Correlation Sessions

The data items of correlation sessions can

include entire events, extracted event attributes, or
also external data items that are required for the
event processing. For instance, for the calculation of
metrics about a business process, sessions can be
utilized to store event data of a business process
instances that are uniquely identified by a process
instance IDs. For each process instance ID, a
separated correlation session can be created during
the event processing to gather runtime data about the
business process instance. The data items in the
correlation sessions might include event attributes or
also external data that is needed for calculating a
business metric. In section 5, we will show an

Session 1 (EA1 = 1)

Session 2 (EA1 = 2)

Session 3 (EA1 = 4)

E
ve

nt
S

tr
ea

m

...

Data Items for
Session 2 (D)

A1=1E A1=2E A1=4E A1=1E A1=1E A1=4E A1=2E A1=4E

Correlation Expression X = A1

Component (O)

Utilizes the Correlation Sessions
for the Event Processing

CORRELATING EVENTS FOR MONITORING BUSINESS PROCESSES

323

example with correlation sessions for computing the
cycle time of a business process.

4 MANAGING CORRELATION
SESSIONS WITH A CONTAINER

In this section, we discuss a container-based
approach for managing the lifecycle of correlation
sessions. The usage of a container decreases the
need for programming and programmer training by
creating standardized, reusable modular components
and by enabling the container to handle many
aspects of programming automatically. In J2EE
environments, the container takes responsibility for
system-level services (such as threading, resource
management, transactions, security, persistence, and
so on). This arrangement leaves the component
developer with the simplified task of developing
business functionality. It also allows the
implementation details of the system services to be
reconfigured without changing the component code,
making components useful in a wide range of
contexts. Similar to traditional J2EE containers, we
use a customized container for the event processing.
In our approach, we extend this concept by adding
container services, which are useful for developers
that write programs that process events. A container
service is responsible for the monitoring of the data
extracts and ensures that resources, workload and
time-constraints are optimized. Also, the
management of correlation sessions is implemented
as a container service that can be utilized for event
data integration solutions. Developers are able to
specify configuration information for correlation
sessions (e.g. correlation expressions, lifetime of
session data, parameters for the persistence of
session data) in a deployment descriptor and the
container will use and try to optimize these settings.

Figure 3 shows the internal components of an
Event Processing Container (EPC). The components
shown with round boxes (event adapters and
ETLets) are user-defined components that are
managed by the container and have to be
implemented by developers. Event adapters are used
to receive event data from various source systems,
and they unify the data in a standard XML format.
ETLet components use the extracted XML event
data as input and perform the processing tasks, such
as the calculation of business metrics and storing
them in a database.

The container uses the Correlation Session
Manager (CSM) to manage the lifecycle of
correlation sessions. The CSM uses access points to
ETLet components in order to assign the appropriate
session during the event processing in runtime.
Similar to a J2EE web container, where user
sessions are used to maintain state information in the
course of performing a user task by returning the
correct user session instance in web components
(e.g. servlets or JSPs), the CSM returns the correct
correlation sessions to ETLet components. The CSM
uses correlation expressions in XPath defined in a
deployment descriptor in order to determine events
that should be correlated. The tasks of the CSM can
be summarized as follows:

Construction and Initialization. The CSM
creates and initializes a new correlation session for
every set of related events. A correlation expression
in XPath is used for associating events and to
determine whether a new correlation session should
be created, or whether an existing correlation session
should be reused.

Correlation Sessions Access. After correlation
sessions have been created, the CSM uses access
points to give ETLet components access to the
sessions. In our current implementation, we expose a
method called getSession() in the base class of
ETLet components that determines in runtime the
correct correlation session during the event
processing.

Session Data Persistence. The CSM supports
the following modes to make the correlation sessions
persistent: 1) memory mode – correlation sessions
are only kept in memory, 2) file mode – correlation
sessions are stored in the file system, 3) database
mode – correlation sessions are stored in a database,
and 4) replication mode – correlation sessions are
replicated among multiple containers in a server
farm. The persistence mode is configurable in a
deployment descriptor and the container
automatically takes care of storing and retrieving
session data.

Isolation for Session Access. During the event
processing, ETLet components can read and write to
a correlation session. In order to prevent side effects

Figure 3: Container-Managed Correlation Sessions.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

324

of concurrently executing events that use the same
correlation session, the CSM ensures appropriate
isolation independent of which persistency mode
was chosen. The current implementation supports
two isolation levels: 1) serialized (default) and 2)
read uncommitted. Some solutions require
concurrent, long-running event data processing
where the isolation can significantly decrease the
throughput of events due to the serialization of the
session data access. A read uncommitted isolation
level, allows ETLet components to take
responsibility for handling session data access
concurrency issues.

Destruction. The CSM also takes care of the
destruction of correlation sessions either: 1) during
the event processing in ETLets by calling the
method getSession().invalidate(), or 2) by specifying
a timeout parameter in the deployment descriptor
and the CSM will automatically remove the session
after a timeout.

5 EVENT PROCESSING
EXAMPLE

In this section, we show a simple example of an
application for calculating the cycle time of business
processes with correlation sessions. Figure 4 shows
a container environment that receives business
process events from two sources. The first source is
a WFMS that notifies the container with messages
about state changes of workflows. The second event
source is an ERP system that uses a J2EE connector
for transmitting business process events. The event
adapter components are used to unify the event
formats from the two event sources and to dispatch

standardized XML events. The container delivers the
dispatched events to the CycleTime ETLet which
calculates the cycle times with the support of
correlation sessions. Finally, the ETLet dispatches
the cycle time metrics which allows evaluator
components to evaluate the metric and generate an
intelligent response (e.g. sending out notifications to
business people or triggering business operations) in
near real-time.

The ETLet in our example calculates the cycle
times by processing the PROCESS_STARTED,
PROCESS_COMPLETED and PROCESS_CANCELED
business process events. Figure 5 shows two
examples for these events. The ETLet
implementation shown in Figure 6 has a method
called processEvent() that does the processing of the
previously mentioned events. The processEvent()
method calculates the cycle time by extracting the
timestamp information from the events and
determining the time differences. The timestamp of
the PROCESS_STARTED event is stored in a
correlation session in order to be retrieved at a later
point in time. In other words, the correlation
sessions in this example capture all
PROCESS_STARTED timestamps of currently
running process instances.

When the PROCESS_COMPLETED or
PROCESS_CANCELED event is received, the cycle
time of a process instance is calculated. The
calculated metric is also published which allows
other managed components of the container to
receive this metric (e.g. components that evaluate
the metric). Since the data items in the correlation
session aren’t needed for other upcoming events, it
is finally destroyed by calling the method
getSession().invalidate().

Figure 4: Example - Processing Events for Calculating Cycle Times

CORRELATING EVENTS FOR MONITORING BUSINESS PROCESSES

325

<event>
 <event-ID>PROCESS_STARTED</event-ID>
 <time-created>2003-01-25T02:33:00</time-created>
 <event-source>
 <source-ID>MQSeries WF</source-ID>
 </event-source>
 <priority>2</priority>
 <business-process-event>
 <process-ID>Order Process</process-ID>
 <process-instance-ID>221</process-instance-ID>
 </business-process-event>
</event>

<event>
 <event-ID>PROCESS_COMPLETED</event-ID>
 <time-created>2003-01-27T05:03:00</time-created>
 <event-source>
 <source-ID>MQSeries WF</source-ID>
 </event-source>
 <priority>2</priority>
 <business-process-event>
 <process-ID>Order Process</process-ID>
 <process-instance-ID>221</process-instance-ID>
 </business-process-event>
</event>

Figure 5: PROCESS_STARTED and PROCESS_COMPLETED Events

Figure 6: ETLet Example.

Figure 7 shows the sections in the deployment
descriptor for the CycleTime ETLet. The ETLet
section carries information about the ETLet name,
the implementation class, the triggering events, the
published metrics, and the correlation sessions.
The correlation session configuration includes the
XPath expression “//process-instance-ID” which is
used by the container to extract data that is used
for the correlation of incoming events (see also
Figure 5 which shows the events that are the XPath
expression applied to). The extracted correlation
data is used by the container to create and associate
correlation sessions. With the correlation
expression shown in Figure 7, a new correlation
session is created for each new process instance.
Furthermore, the configuration for correlation

section includes parameters about the isolation
level, the session timeout (in minutes), and the
persistent storage for the session data. In this
example, the persistent storage for session data is
crucial since processes can have a long cycle time
and the container might loose the session data due
to machine crashes or restarts.

The container uses the information shown in
Figure 7 for instantiating and initializing the
CycleTime ETLet component. Please note that the
deployment descriptor includes other parameters
that are not shown in the figure (e.g. database
configuration for the error tables, global
parameters, control flow for the event processing,
etc.).

public class CycleTimeETLet extends ETLet {

 // Event processing for the events PROCESS_STARTED and PROCESS_COMPLETED
 public void processEvent(WorkflowEvent event, MetricPublisher metricPublisher) {
 if(event.getEventID().equals(“PROCESS_STARTED”)) {
 getSession().put(“ProcessStarted”,event.getTimestamp());
 }
 if(event.getEventID().equals(“PROCESS_COMPLETED”) ||
 event.getEventID().equals(“PROCESS_CANCELED”)) {
 Date started = (Date)getSession().get(“ProcessStarted”);
 Date done = event.getTimestamp();

 // Calculate the cycle time in seconds
 long cycleTime = (done.getTime() - started.getTime())/1000;

 // Store the cycle time in the database
 ... store cycle time in database

 // Publish the cycle time metric
 metricPublisher.publish(“CycleTime”, new Long(cycleTime), null);

 // Cleanup
 getSession().invalidate();
 }
 }

 // Handles immediately exceptions
 public boolean failed(WorkflowEvent event, Exception exception) {
 // Container will automatically store events and exceptions in an error table
 return false;
 }
}

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

326

Figure 7: Deployment Descriptor Example.

6 CONCLUSION

In large organizations, huge amounts of data can
be generated and consumed by business processes.
Business managers need up-to-date information to
make timely and sound business decisions. This
paper described a container-based approach for
correlating event data with the aim of providing
continuous, near real-time data integration for data
warehouse environments. We introduced the
concept of managed correlation sessions to capture
related event data and to facilitate its data
management. Correlation sessions provide direct
access to correlated event data and leave the
component developer with the simplified task of
developing business functionality. Our container-
based approach for managing correlation sessions
allows a reconfiguration without changing the
component code, making components useful in a
wide range of contexts.

REFERENCES

Babu, S. and Widom, J., Continuous queries over data
streams, ACM SIGMOD Record, 30(3):109–120,
Sept. 2001.

Feldkuhn, L. and Erickson, J., Event Management as a
Common Functional Area of Open Systems
Management, in Proc. IFIP Symposium on
Integrated Network Management, North Holland,
1989.

Houck, K., Calo, S., Finkel, A., Towards a practical
alarm correlation system, IEEE/IFIP Symposium
on Integrated Network Management, 1995.

Katzela, I. and Schwartz, M., Schemes for fault
identification in communication networks, IEEE
Transactions on Networking, 1995.

McGregor, C. and Schiefer, J., A Framework for
Analyzing and Measuring Business Performance
with Web Services, Proceedings of the 2003 IEEE
Conference on E-Commerce, CEC'03, Newport
Beach, CA, 2003.

Nygate, Y.A., Event correlation using rule and object
base techniques, IEEE/IFIP Symposium on
Integrated Network Management, 1995.

Wu, P., Bhatnagar, R., Epshtein, L., Bhandaru, M., Shi,
Z., Alarm correlation engine (ACE), In Proceedings
of the IEEE/IFIP 1998 Network Operations and
Management Symposium (NOMS), New Orleans,
1998.

Yemini, S. A., Sliger, S., Eyal, M., Yemini, Y., Ohsie,
D., High Speed and Robust Event Correlation,
IEEE Communications Magazine 34, No. 5, 82–90,
1996.

...
<!-- ETLet section -->
<ETLet>
 <name>CycleTimeETLet</name>
 <impl-class>CycleTimeETLet</impl-class>
 <ETLet-triggers>
 <event-trigger event-id="PROCESS_STARTED"/>
 <event-trigger event-id="PROCESS_COMPLETED"/>
 <event-trigger event-id="PROCESS_CANCELED"/>
 </ETLet-triggers>
 <published-metrics>
 <metric-name>CycleTime</metric-name>
 </published-metrics>
 <correlation-session-config>
 <correlation-expression>//process-instance-ID</correlation-expression>
 <isolation-level>serialized</isolation-level>
 <session-timeout>43200</session-timeout>
 <persistent-store>
 <persistent-store-database>
 <jdbc-connection-string>jdbc:db2:csmdb</jdbc-connection-string>
 <database-driver>COM.ibm.db2.jdbc.app.DB2Driver</database-driver>
 <user>dbuser</user>
 <password>dbpassword</password>
 </persistent-store-database>
 </persistent-store>
 </correlation-session-config>
</ETLet>
...

CORRELATING EVENTS FOR MONITORING BUSINESS PROCESSES

327

