
A TRANSACTION MODEL FOR LONG RUNNING BUSINESS
PROCESSES*

Jinling Wang, Beihong Jin, Jing Li
Institute of Software, Chinese Academy of Sciences, Beijing, China

Keywords: Long duration transaction, Extended transaction model, Transaction processing middleware

Abstract: Many business processes in the enterprise applications are both long running and transactional in nature, but
currently no transaction model can provide full transaction support for such long running business
processes. In this paper, we proposed a new transaction model — PP/T model. It can provide full
transaction support for the long running business processes, so that application developers can focus on the
business logic, with the underlying platform providing the required transactional semantics. Simulation
results show that the model has good performance in processing the long running business processes.

1 INTRODUCTION

In many enterprise applications (such as the
mortgage processing system and the insurance
system), a business process can run for several hours
or even longer. At the same time, these long running
business processes (LRBP) should have the same
transactional properties as the short running business
processes. The existing transaction processing (TP)
systems (such as TP Monitor and DBMS) mainly
serve business processes that last for a very short
time (e.g., several milliseconds), and will cause
serious performance degradation if applied to such
long running business processes. Therefore, we need
a new type of transaction model to support the long
running business processes. It should meet the
following requirement:
a) It can ensure the long running business processes

have the same transactional properties as the
short running business processes.

b) It can enable the application developers to focus
on the business logic, with the underlying
platform providing the required functions to
support the transactional semantics.

c) It can automatically solve concurrency conflicts

between LRBPs and rollback a LRBP without
human’s participations.

d) When a long duration transaction conflict with
traditional short transactions, it can ensure the
long duration transaction has higher priority,
because the long duration transaction may have
run for many steps and has higher cost of failure.

e) Since many applications must deal with both the
long running business processes and the short
running business processes, it should be built on
the existing TP systems, and shouldn’t require
the underlying TP system to change
dramatically.
People have made a lot of research on the long

duration transactions and proposed numerous long
duration transaction models, but none of them can
fully meet the above requirements. In this paper, we
proposed a new transaction mode — PP/T model
that can meet the requirement listed above. It
incorporates four enhancements into the standard
transaction model: sub-transactions, multiple
versions, the semantics of transactions and the
semantic constraints on the database states. In
comparison with other long duration transaction
models, the main advantage of our model is that it
uses a pessimistic predicate/transform (PP/T)
concurrency control mechanism. The PP/T
mechanism combines the predicate/transform
mechanism with the semantic constraints on the
database states, so that it can ensure the priority of
long duration transactions when solving conflicts
between traditional transactions and long duration

* This work was supported by the National Grand
Fundamental Research 973 Program of China under Grant No.
2002CB312005, the National Hi-Tech Research and
Development 863 Program of China under Grant No.
2003AA115440.

267
Wang J., Jin B. and Li J. (2004).
A TRANSACTION MODEL FOR LONG RUNNING BUSINESS PROCESSES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 267-274
DOI: 10.5220/0002615602670274
Copyright c© SciTePress

transactions. Our model is then named as PP/T
model.

The remainder of the paper is organized as
follows. In Section 2, we discuss related work in this
area. In Section 3, we introduce the concept of the
PP/T model. In Section 4, we present and analyze
the simulation results. Finally, in Section 5, we
conclude the paper with a summary.

2 RELATED WORK

People have made a lot of research on the long
duration transaction and numerous transaction
models have been proposed. One of the most
influential models is the saga model (Garcia-Molina
and Salem, 1987). The basic idea of this model is to
decompose the long duration transaction into a set of
sub-transactions, which can be executed separately.
Each sub-transaction is a traditional transaction.
Compensating transactions are used when the long
duration transaction needs to be rolled back.

The saga model doesn’t provide the strict
atomicity property for long duration transactions, but
provide the relaxed atomicity. The saga model also
weakens the isolation property; the intermediate
results will be exposed to other transactions after the
execution of each sub-transaction. Therefore, when
we want to roll back a long duration transaction, we
should not only compensate its executed sub-
transactions, but also compensate all other
transactions that directly or indirectly used the
intermediate results of the long duration transaction.
Furthermore, since the set of transactions that used
the intermediate results of a long duration
transaction can’t be predicated in advance, the
compensating transactions can hardly be developed
beforehand, and the compensating process will have
to rely on the human’s participation in most cases.

To improve the atomicity and isolation for long
duration transactions, many other long duration
transaction model (Kim et al. 1984; Du and Ghanta
1987; Gaede and Taylor 1998) use a check-
out/check-in concurrency control mechanism. These
models are mainly used in the CAD, CASE, and SIS
areas. The basic idea of the check-out/check-in
mechanism is as follows: when a long duration
transaction want to operation certain data in
database, it first checks out the data from database
into its own local data space, and performs the
operation on the data in its local data space. When
the whole long duration transaction finishes, it
checks in all the data in its local data space into the
database. During the executing period of a long
duration transaction, other transactions may have
changed the data in the database, so when a long

duration transaction checks in its data, the data in its
local data space and the data in the database should
be integrated into an unified data version. The
responsibility of version integration mainly relies on
the human who is running the transaction. The main
disadvantage of the mechanism is that it lacks
formal definitions, so the correctness criteria cannot
be characterized mathematically. The users are
responsible for solving conflicts and correcting
errors, which may be too difficult for them.
Therefore, it is not suitable for many enterprise
applications.

The NT/PV model (Korth and Speegle, 1994)
combines the semantic knowledge of transactions
with multiple version and nested transaction
techniques to support the long duration transaction.
The model provides strong ability to express
complex interactions, and proposed a set of
correctness criteria for concurrency scheduling.
Since the model also uses the compensating
transaction to roll back a long duration transaction, it
requires each sub-transaction to have a
corresponding compensating transaction, which is
impracticable for many real-world applications.

The LRUOW model (Bennett et al., 2000) is one
of the newly proposed long duration transaction
models in recent years. It can supports two types of
concurrency control mechanisms, the most
noticeable one being the predicate/transform
mechanism. In the model, each long duration
transaction has its own data space, and the
processing of a long duration transaction can be
divided into two phases: the rehearsal phase and the
performance phase. The rehearsal phase spans from
the beginning of the transaction to the beginning of
commit. In this phase, when the user requests the
system to execute a sub-transaction, the system just
execute it on the local data space of the long
duration transaction, and the data in the database
remains unchanged. The performance phase spans
from the beginning of commit to the end of commit.
In this phase, the system actually executes all sub-
transactions on the database in a batch. Each sub-
transaction is a predicate/transform pair: the
predicate is the precondition of the sub-transaction,
and the transform is the actual operation of the sub-
transaction. When the system actually executes each
sub-transaction on the database, it first checks the
predicate of the sub-transaction on the current
database state. If the predicate is false, then the
whole long duration transaction will fail.

The key idea of the LRUOW model is to
postpone the execution of the actions in a long
duration transaction until the committing time of the
transaction, and then execute these actions in a
batch. Therefore, the long duration transaction can
be converted into a traditional short transaction, so it

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

268

can have the same ACID semantics as the traditional
transactions. For example, in a typically Internet
shopping application, after a customer chooses a
product and inputs the purchasing amount, the web
application just saves the ordering information in the
customer’s Http session rather than updating the
database immediately. Only after the customer has
chosen all desired products and completed the
paying process, will the web application actually
change the database. The customer’s shopping
process can be considered as a long duration
transaction, in which the concurrency control
mechanism is predicate/transform.

The main disadvantage of the
predicate/transform mechanism is, it can’t ensure the
priority of long duration transaction when it conflicts
with traditional short transactions, but the cost of
failure of the long duration transaction is much
higher than that of the short transaction. What’s
more, it can’t notify the user of the failure of a long
duration transaction timely. For example, in the
preceding Internet shopping application, after the
customer finishes ordering a product, another
transaction may change the stock of the product to
an amount lower than the customer’s purchasing
amount. But the customer is not aware of the
change, he may continue to order other products,
and can’t know the failure of his shopping session
until the last minutes.

To overcome the disadvantage of the
predicate/transform mechanism and ensure the
priority of long duration transactions, let’s take a
look at a business process in a banking application.
Assume a customer requests the bank to buying
$1000 bonds for him. The bank will forward the
request to a stockjobber, but the result of the deal
can’t be known until the next day. For fear that the
customer draw the money away from his account in
the meantime, the bank will freeze part of the
amount in the customer’s account, i.e., although the
balance of the account is X, the amount that the
customer can draw out is X-1000 (X ≥ 1000). Such a
constraint on the data object is like a “lock” in the
semantic layer. It doesn’t prohibit other transactions’
access to the data object, but requires that if other
transactions change the value of the data object, the
new value must satisfy certain condition. Therefore,
it can ensure an operation will be successfully
executed in the future. Our new transaction model is
based on this practice.

It should be noted that there has been various
works on the semantics-based concurrency control
protocols (Garcia-Molina 1983; Weikum 1991;
Agrawal et al. 1993). In comparison with these
works, our work focus on providing transaction
support for the long running business processes, and
we combines the semantic constraints on database

states with the multiple version techniques and the
predicate/transform techniques to form a new
transaction model.

3 THE CONCEPT OF THE PP/T
MODEL

3.1 The Definition of Long Duration
Transaction

Our model takes the same approach as the saga
model and defines the long duration transaction as a
set of sub-transactions:

Definition 1. A long duration transaction is
defined as the following tuple:

 lt= (ST, →)

ST={st1, st2, …, stn}, it is the set of steps that
comprise the long duration transaction. → is a
partial order on ST that should be satisfied in the
execution of the long duration transaction.

We assume the concurrency-scheduling
algorithm of the underlying traditional TP system is
serializable, so an execution of the long duration
transaction will form a total order on ST.

An executing history of a long duration
transaction can be denoted as:

 st1 ° st2 ° … ° stn

We can give the following definition for each
step of a long duration transaction:

Definition 2. A step of a long duration
transaction is defined as the following tuple:

 sti = (pi, fi)

In the definition, pi is the precondition of sti, and
fi is the actual operation on the database. The
predicate pi should be the necessary and sufficient
condition for the success of sti, i.e.:

 pi(S) <==> the success of sti

In the above expression, pi(S) means the value of
the predicate pi on the database state S.

When sti is executed alone, it can be treated as a
transition on the database state. So we can define fi
as a transition function on the database state:

 S2 = fi (S1)

A TRANSACTION MODEL FOR LONG RUNNING BUSINESS PROCESSES

269

In the above expression, S1 is the database state
before the execution of sti, and S2 is the database
state after the execution of sti.

3.2 Multiple Versions of Database
State

We use the multiple version technique to achieve the
isolation of different long duration transactions
when they are executed concurrently. Every long
duration transaction has its own local data space, the
data inside which is invisible to other transactions.
In the rehearsal phase of a long duration transaction,
when step sti wants to change data in the database, it
copies the data from the database to its own local
data space and changes the data inside the local data
space, while the data in the actual database remain
unchanged. It’s not until the performance phase that
the operations are actually executed on the database.

We call the state of the actual database as
“global database state”. In the rehearsal phase, each
long duration transaction can only see its own
version of database state, not the global database
state. The version of database state seen by a long
duration transaction is the combination of the global
database state and the state of the local data space of
the transaction.

We use LDi
lt to denote the state of the local data

space at the beginning of step sti in lt. LDi
lt includes

the data changed from st1 to sti-1. LD1
lt=Φ. We use

Si
lt to denote the global database state at the

beginning of step sti, and Vi
lt to denote the version of

database state seen by lt at the beginning of step sti.
Vi

lt is synthesized as following:

 Vi
lt = LDi

lt override Si
lt

The operator override means that if a data object
exists in the first operand, its value is got from the
first operand; otherwise its value is got from the
second operand.

After the execution of sti, the state of the local
data space changes from LDi

lt to LDi+1
lt, but the

global database state remains unchanged:

 fi(Vi
lt) = LDi+1

lt override Si
lt

In the period between the end of sti and the
beginning of sti+1, other transactions may change the
global database state from Si

lt to Si+1
lt. Therefore, at

the beginning of sti+1, the database state visible to lt
(i.e., Vi+1

lt) is once again synthesized from LDi+1
lt

and Si+1
lt.

3.3 The PP/T Concurrency Control
Mechanism

For step sti in a long duration transaction to be
successfully executed on database state S, pi must be
held on S. Therefore, for a long duration transaction
to be successfully committed, the database state in
the performance phase should satisfy the predicate
of every step, but the predicate/transform
mechanism can’t ensure it. To overcome the
drawback of the predicate/transform mechanism, we
put forward a pessimistic predicate/transform (PP/T)
concurrency control mechanism.

In the PP/T mechanism, a constraint table is set
up for the database, which includes all constraints
that a consistent database state should satisfy. These
constraints are like “semantic locks” on the data
objects. When a long duration transaction finishes
every step in the rehearsal phase, it put the
precondition of the step into the constraint table.
After that, when any transaction prepares to commit,
the system firstly checks whether the new database
state satisfies all constraints in the constraint table. If
any constraint is not satisfied, the transaction is not
allowed to commit. Therefore, in the performance
phase of the long duration transaction, the
preconditions of every step are satisfied, so the
execution of a long duration transaction can be
successfully completed. We call the original
predicate/transform mechanism as optimistic
predicate/transform mechanism (since it does not
exert any constraints on the database state), and call
the new constraint-based predicate/transform
mechanism as pessimistic predicate/transform
mechanism.

In the rehearsal phase of a long duration
transaction, for step sti to be successfully executed,
pi must be satisfied on the transaction’s own version
of database state, i.e., pi(Vi

lt)=true. Since Vi
lt is

synthesized from LDi
lt and Si

lt, we can divide pi into
two parts: one part involves the data in LDi

lt,
denoted as pi

LD, and the other part doesn’t involve
the data in LDi

lt, denoted as pi
S. Apparently, we can

get the following conclusion:

 pi(Vi
lt) => pi

S(Si
lt)

Therefore, we can add pi
S into the constraint

table of the database, so that later transactions will
not violate the constraints.

However, we can’t conclude pi
LD(Si

lt)=true from
pi

LD(Vi
lt)=true, so we have to deal with pi

LD
specially. Agrawal et al. (1993) has proposed the
idea of a wp function that is helpful to solving this
problem. Following is the definition of the wp
function:

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

270

Definition 3. The function wp(st1, p2) is the
weakest condition that should be held on the
database state before the execution of st1, so that
predicate p2 is true after the execution of st1. I.e.:

 wp(st1, p2)(S) <==> p2 (f1(S))

According to Definition 3, we can get the
following conclusion:

 wp(st1 ° … ° sti-1, pi
LD)(S1

lt) <==> pi
LD (Vi

lt)

The predicate wp(st1 ° … ° sti-1, pi
LD) is the

weakest condition that should be held on S1
lt to

ensure pi
LD (Vi

lt) = true. Therefore, we can firstly
check whether predicate wp(st1 ° … ° sti-1, pi

LD) is
true on the current global database state Si

lt. If it is
not true, then step sti can’t be successfully executed,
and the system will return an error message. If the
predicate is true, the system will put the predicate
into the constraint table, so that later transactions
will not violate the constraints.

However, the process of computing wp(st1 ° … °
sti-1, pi

LD) from pi
LD may be very difficult

(sometimes even impossible) in practice. Therefore,
we can weaken the PP/T mechanism to just
recording pi

S in the constraint table, and don’t deal
with pi

LD. In such case, the PP/T mechanism is still
an improvement over the original
predicate/transform mechanism, but it can’t strictly
ensure the successful execution of the long duration
transaction in the performance phase.

3.4 The Behaviour of the Transaction
Manager

For a traditional TP system to support the PP/T
model, we can add a new component called “long
transaction manager” into the TP system. The long
transaction manager takes charge of the management
and execution of long duration transactions, while
the traditional transaction manager takes charge of
the management and execution of traditional short
transaction.

In the rehearsal phase of a long duration
transaction, when a user requests the system to
perform step sti, the long transaction manager takes
the following actions (all these actions are
encapsulated into a traditional short transaction):
1. Check whether pi is true on the transaction’s

version of database state Vi
lt. If pi(Vi

lt) is false,
the execution fails and error messages will be
returned.

2. Record sti and relevant parameters in the
operation log.

3. Execute sti on the transaction’s local data space.
All changed data are recorded in the
transaction’s local data space, not in the actual
database.

4. Put piS into the constraint table of the database.
5. Optionally, put wp(st1 ° … ° sti-1, piLD) into

the constraint table of the database.
When the user commits a long duration

transaction, the long duration transaction goes into
the performance phase. In this phase, the long
transaction manager takes the following actions (all
these actions are encapsulated into a traditional short
transaction):
1. Clear out all the constraints from the constraint

table that are added by the current long duration
transaction.

2. Execute every step on the actual database
according to the operation log. Before the
execution of every step, the predicate of the step
is checked on the current database state. If the
predicate is false, the performance phase of the
long duration transaction will fail.

3. Delete the local data space of the long duration
transaction after all steps being successfully
finished.
To support the long duration transaction, the

traditional transaction manager should also change a
little. In the committing phase of a traditional short
transaction, the traditional transaction manager
should check whether the new database state
satisfies all constraints in the constraint table. If all
constraints are satisfied, the transaction can commit
as usual, otherwise the transaction will be rolled
back.

3.5 The Recovery Mechanism

In the PP/T model, the local data space of the long
duration transaction is persistent, so the recovery
mechanism is relatively simple. There are two kinds
of the recovery mechanism: backward recovery and
forward recovery. Backward recovery (i.e., rollback)
means to undo the effect of executed steps of a long
duration transaction when a failure occurs. Forward
recovery (e.g., the recovery after the system crash)
means to recover the state of a long duration
transaction to the most recent state so that the
transaction can be resumed.

When a failure occurs, an unfinished long
duration transaction may be in one of the following
states:
a) At the interval between two steps. I.e., the

previous step has finished and the next step
doesn’t begin yet. At this stage, since all
intermediate information is persistent in the local
data space and the operation log, the system

A TRANSACTION MODEL FOR LONG RUNNING BUSINESS PROCESSES

271

needn’t do any work for the forward recovery.
For the backward recovery, the system need to
delete the local data space of the transaction, and
clear out all the constraints that are added by the
transaction from the constraint table.

b) At the executing process of a step in the
rehearsal phase. Since the executing process is
encapsulated into a traditional transaction, the
recovery work of this step is done by the
recovery mechanism of the underlying
traditional TP system. After that, the other
recovery works are the same as stated in 1).

c) At the executing process of the performance
phase. Since the executing process is
encapsulated into a traditional transaction, the
recovery work of this phase is done by the
recovery mechanism of the underlying
traditional TP system. After that, the other
recovery works are the same as stated in 1).

4 PERFORMANCE ANALYSIS

To evaluate the proposed PP/T model, we
implemented it in a simulation environment and
compared the simulation results with the LRUOW
model.

4.1 Simulation Environment

In the simulation experiments, X traditional
transactions and Y long duration transactions were
generated and executed in 20 minutes, so that we
could observer the performance of the PP/T model
and the LRUOW model in a variety of simulated
loads. The simulation program was developed in
Java and was executed on a common desktop PC
with an Intel Pentium IV CPU at 1.5GHz and
256MB RAM running Windows 2000 Professional

Our simulation scenario was a banking business
system. Suppose there were N accounts in the
database, the initial balance of each account being
$5000.00. Each account allowed two kinds of
operations: depositing and drawing. The balance of
accounts couldn’t be lower than zero. If an operation
would cause the balance of an account to be lower
than zero, the operation would fail. The executing
time of each operation was set to 5 ms.

Suppose each traditional transaction was a
transferring account process, including a depositing
operation on an account and a drawing operation on
another account. The transferring amount was
randomly generated in the zone of (0, max_amount).
If one of the operations in a transaction failed, the
transaction would be rolled back. The beginning

time of the traditional transactions was randomly
generated in the period from 0 to 20 minutes.

Suppose the traditional transaction manager used
the strict 2PL scheduling protocol to manage
concurrency and used the time-out mechanism to
detect deadlocks. The time-out value was set to
5000ms, and the timed-out transactions were rolled
back.

Suppose each long duration transaction was a
kind of banking business process that needed multi-
people to coordinate and spanned several minutes.
For example, when a customer required the bank to
draw a bank draft for him, several steps should be
performed by the bank clerks, such as recording the
ledger, reviewing the ledger, getting authorization
from the manger, inputting the draft information,
reviewing the draft information, etc. In each step, a
bank clerk executed a traditional short transaction.
In our experiments, we supposed that each long
duration transaction was composed of 5 sub-
transactions, and each sub-transaction was a
transferring account business process. The duration
time of each long duration transaction was set to 3
minutes, and the beginning times of its sub-
transactions were randomly generated in the
duration period of the long duration transaction. The
beginning time of the long duration transactions was
randomly generated in the period from 0 to 17
minutes.

4.2 Workload Parameters

In the simulation experiment, we use the failing rate
of long duration transactions to evaluate
performance of the PP/T model and the LRUOW
model. It’s the proportion of failed long duration
transactions in all of the long duration transactions,
reflecting the concurrency management ability of the
long duration transaction models.

In the PP/T model and the LRUOW model, the
failing rate of long duration transactions may be
affected by the following factors:
a) The transferring amount. The amount was

randomly generated in the zone of (0,
max_amount). If the value of max_amount
became larger, the drawing operations on
accounts were more possible to fail, so the
failing rate of long duration transactions would
become larger. It influenced the probability of
semantic conflicts between transactions.

b) The number of accounts, i.e., the number of data
objects shared by all transactions. It influenced
the probability of concurrency conflicts of
reading and writing operations between
traditional transactions.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

272

c) The number of traditional transactions. It
influenced the probability of concurrency
conflicts of reading and writing operations
between traditional transactions.

d) The number of long duration transactions. It
influenced the probability of concurrency
conflicts between long duration transactions.

4.3 Simulation Results

In the experiments, we took the maximum
transferring amount, the number of accounts, the
number of traditional transactions, and the number
of long duration transactions as variables
respectively, so that we could observe the failing
rate of long duration transactions under different
conditions. For each set of parameters, we
repeatedly executed the simulation program for 30
times and use the average result as the final
simulation result.

Fig. 1 shows the influence of maximum
transferring amount on the failing rate of long
duration transactions. In the figure, the X-axis
represents the maximum transferring amount, and
the Y-axis represents the failing rate of long duration
transactions. The experiment parameters were as
follows: the maximum transferring amount increased
from $250.00 to $450.00, the number of accounts
was 200, the number of traditional transactions was
60000, and the number of long duration transactions
was 300. From the figure we can see that the failing
rate under the LRUOW model increased rapidly
(from 4.71% to 19.05%) with the increment of
maximum transferring amount. By contrast, the
failing rate under the PP/T model increased very
slowly (from 1.46% to 5.82%). This phenomenon
could be explained by the fact that the PP/T model
makes use of the semantic constraints on database
states to improve its concurrency management
ability, so with the probability of semantic conflicts
of transactions increasing, the advantage of PP/T
model became more and more obvious.

Fig. 2 shows the influence of the number of
accounts on the failing rate of long duration
transactions. In the figure, the X-axis represents the
number of accounts, and the Y-axis represents the
failing rate of long duration transactions. The
experiment parameters were as follows: the number
of accounts decreased from 300 to 100, the
maximum transferring amount was $350.00, the
number of traditional transactions was 60000, and
the number of long duration transactions was 300.
From the figure we can see that the failing rate
increased more rapidly under the LRUOW model
(from 8.13% to 17.7%) than under the PP/T model
(from 2.35% to 6.6%).

Fig. 3 shows the influence of the number of the
traditional transactions on the failing rate of long

duration transactions. In the figure, the X-axis
represents the number of the traditional transactions,
and the Y-axis represents the failing rate of long
duration transactions. The experiment parameters
were as follows: the number of the traditional
transactions increased from 50000 to 90000, the
maximum transferring amount was $350.00, the
number of accounts was 200, and the number of
long duration transactions was 300. From the figure
we can see that the failing rate under the LRUOW
model increased moderately from 10.32% to
15.01%, while the failing rate under the PP/T model
increased slightly from 2.97% to 4.5%.

0
3
6
9

12
15
18
21

280 250 220 190 160 130 100

accounts

Th
e

fa
ili

ng
 ra

te
 (%

)

LRUO
W

Figure 2: The influence of the number of accounts

0

3

6

9

12

15

18

21

270 300 330 360 390 420 450
maximum tranferring amount

Th
e

fa
ili

ng
 ra

te
 (%

) LRUOW
PP/T

0

3

6

9

12

15

18

21

54 60 66 72 78 84 90

traditional transactions(1000x)

Th
e

fa
ili

ng
 ra

te
 (%

) LRUOW
PP/T

Figure 3: The influence of the number of
traditional transactions

Figure 1: The influence of maximum
transferring amount

A TRANSACTION MODEL FOR LONG RUNNING BUSINESS PROCESSES

273

Fig. 4 shows the influence of the number of the
long duration transactions on the failing rate of long
duration transactions. In the figure, the X-axis
represents the number of the long duration
transactions, and the Y-axis represents the failing
rate of long duration transactions. The experiment
parameters were as follows: the number of the long
duration transactions increased from 200 to 600, the
maximum transferring amount was $350.00, the
number of accounts was 200, and the number of
traditional transactions was 60000. From the figure
we can see that the number of long duration
transactions has no obvious influence on the failing
rate of long duration transactions under the LRUOW
model. Under the PP/T model, the failing rate
increased a little with the increment of the number of
long duration transactions, from 2.6% to 4.71%.

From the above simulation results we can see
that the performance of the PP/T model is better than
that of the LRUOW model, and the advantage of
PP/T model is more obvious when there is a higher
possibility of semantic conflicts between
transactions.

5 CONCLUSION

In this paper, we proposed a new long duration
transaction model — PP/T model. It can provide full
transaction support for the long running business
processes in enterprise applications. In comparison
with the LRUOW model, the advantage of our
model is that it can ensure the priority of long
duration transactions, so that the failure rate of long
duration transactions can be greatly decreased.

The key idea of the PP/T model is to postpone
the actions of a long duration transaction to the
committing time, so that the long duration
transaction can be converted into a traditional short

transaction. At the same time, constraints are exerted
on the database state to ensure that the postponed
operations can be successfully executed in the
committing time. Simulation results show that the
model has sound concurrency management ability.

REFERENCES

Garcia-Molina, H., and Salem, K., 1987. Sagas. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM press, pp.
249-259.

Kim, W., Lorie R., Mcnabb D., and Plouffe W., 1984. A
transaction mechanism for engineering design
databases. In Proceedings of the 10th International
Conference on Very Large Databases. VLDB
Endowment, pp. 355-362.

0
3
6
9

12
15
18
21

240 300 360 420 480 540 600
long duration transactions

Th
e

fa
ili

ng
 ra

te
(%

)

LRUOW
PP/T

Du, H. C., and Ghanta, S., 1987. A Framework for
Efficient IC/VLSI CAD Databases. In Proceedings of
the 13th International Conference on Very Large
Databases. VLDB Endowment, pp. 619-625.

Kuo, D., Gaede, V., and Taylor, K., 1998. Using
Constraints to Manage Long Duration Transactions in
Spatial Information Systems. In Proceedings of the
3rd IFCIS International Conference on Cooperative
Information Systems. IEEE Computer Society, pp.
384-395.

Korth, H. F., and Speegle, G., 1994. Formal aspects of
concurrency control in long-duration transaction
systems using the NT/PV model. ACM Transactions
on Database Systems, vol. 19, no. 3, September, pp:
492-535.

Figure 4: The influence of the number of
long duration transactions

Bennett, B., Hahm, B., Leff, A., Mikalsen, T., Rasmus, K.,
Rayfield, J., and Rouvellou, I., 2000. A distributed
object oriented framework to offer transaction support
for long running business processes. In Proceedings of
IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing.
Springer-Verlag.

Garcia-Molina, H., 1983. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems, vol. 8, no. 2, June,
pp: 186-213.

Weikum G., 1991. Principles and realization strategies of
multilevel transaction management. ACM
Transactions on Database Systems, vol. 16, no. 1,
March, pp: 132-180.

Agrawal, D., Abbadi, A. E. and Singh, A. K., 1993.
Consistency and orderability: semantics-based
correctness criteria for databases. ACM Transactions
on Database Systems, vol. 18, no. 3, September, pp:
460-486.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

274

