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Abstract: Many business processes in the enterprise applications are both long running and transactional in nature, but 
currently no transaction model can provide full transaction support for such long running business 
processes. In this paper, we proposed a new transaction model — PP/T model. It can provide full 
transaction support for the long running business processes, so that application developers can focus on the 
business logic, with the underlying platform providing the required transactional semantics. Simulation 
results show that the model has good performance in processing the long running business processes. 

1 INTRODUCTION 

In many enterprise applications (such as the 
mortgage processing system and the insurance 
system), a business process can run for several hours 
or even longer. At the same time, these long running 
business processes (LRBP) should have the same 
transactional properties as the short running business 
processes. The existing transaction processing (TP) 
systems (such as TP Monitor and DBMS) mainly 
serve business processes that last for a very short 
time (e.g., several milliseconds), and will cause 
serious performance degradation if applied to such 
long running business processes. Therefore, we need 
a new type of transaction model to support the long 
running business processes. It should meet the 
following requirement: 
a) It can ensure the long running business processes 

have the same transactional properties as the 
short running business processes. 

b) It can enable the application developers to focus 
on the business logic, with the underlying 
platform providing the required functions to 
support the transactional semantics. 

c) It can automatically solve concurrency conflicts 

between LRBPs and rollback a LRBP without 
human’s participations. 

d) When a long duration transaction conflict with 
traditional short transactions, it can ensure the 
long duration transaction has higher priority, 
because the long duration transaction may have 
run for many steps and has higher cost of failure. 

e) Since many applications must deal with both the 
long running business processes and the short 
running business processes, it should be built on 
the existing TP systems, and shouldn’t require 
the underlying TP system to change 
dramatically. 
People have made a lot of research on the long 

duration transactions and proposed numerous long 
duration transaction models, but none of them can 
fully meet the above requirements. In this paper, we 
proposed a new transaction mode — PP/T model 
that can meet the requirement listed above. It 
incorporates four enhancements into the standard 
transaction model: sub-transactions, multiple 
versions, the semantics of transactions and the 
semantic constraints on the database states. In 
comparison with other long duration transaction 
models, the main advantage of our model is that it 
uses a pessimistic predicate/transform (PP/T) 
concurrency control mechanism. The PP/T 
mechanism combines the predicate/transform 
mechanism with the semantic constraints on the 
database states, so that it can ensure the priority of 
long duration transactions when solving conflicts 
between traditional transactions and long duration 
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transactions. Our model is then named as PP/T 
model. 

The remainder of the paper is organized as 
follows. In Section 2, we discuss related work in this 
area. In Section 3, we introduce the concept of the 
PP/T model. In Section 4, we present and analyze 
the simulation results. Finally, in Section 5, we 
conclude the paper with a summary.  

2 RELATED WORK 

People have made a lot of research on the long 
duration transaction and numerous transaction 
models have been proposed. One of the most 
influential models is the saga model (Garcia-Molina 
and Salem, 1987). The basic idea of this model is to 
decompose the long duration transaction into a set of 
sub-transactions, which can be executed separately. 
Each sub-transaction is a traditional transaction. 
Compensating transactions are used when the long 
duration transaction needs to be rolled back. 

The saga model doesn’t provide the strict 
atomicity property for long duration transactions, but 
provide the relaxed atomicity. The saga model also 
weakens the isolation property; the intermediate 
results will be exposed to other transactions after the 
execution of each sub-transaction. Therefore, when 
we want to roll back a long duration transaction, we 
should not only compensate its executed sub-
transactions, but also compensate all other 
transactions that directly or indirectly used the 
intermediate results of the long duration transaction. 
Furthermore, since the set of transactions that used 
the intermediate results of a long duration 
transaction can’t be predicated in advance, the 
compensating transactions can hardly be developed 
beforehand, and the compensating process will have 
to rely on the human’s participation in most cases. 

To improve the atomicity and isolation for long 
duration transactions, many other long duration 
transaction model (Kim et al. 1984; Du and Ghanta 
1987; Gaede and Taylor 1998) use a check-
out/check-in concurrency control mechanism. These 
models are mainly used in the CAD, CASE, and SIS 
areas. The basic idea of the check-out/check-in 
mechanism is as follows: when a long duration 
transaction want to operation certain data in 
database, it first checks out the data from database 
into its own local data space, and performs the 
operation on the data in its local data space. When 
the whole long duration transaction finishes, it 
checks in all the data in its local data space into the 
database. During the executing period of a long 
duration transaction, other transactions may have 
changed the data in the database, so when a long 

duration transaction checks in its data, the data in its 
local data space and the data in the database should 
be integrated into an unified data version. The 
responsibility of version integration mainly relies on 
the human who is running the transaction. The main 
disadvantage of the mechanism is that it lacks 
formal definitions, so the correctness criteria cannot 
be characterized mathematically. The users are 
responsible for solving conflicts and correcting 
errors, which may be too difficult for them. 
Therefore, it is not suitable for many enterprise 
applications. 

The NT/PV model (Korth and Speegle, 1994) 
combines the semantic knowledge of transactions 
with multiple version and nested transaction 
techniques to support the long duration transaction. 
The model provides strong ability to express 
complex interactions, and proposed a set of 
correctness criteria for concurrency scheduling. 
Since the model also uses the compensating 
transaction to roll back a long duration transaction, it 
requires each sub-transaction to have a 
corresponding compensating transaction, which is 
impracticable for many real-world applications. 

The LRUOW model (Bennett et al., 2000) is one 
of the newly proposed long duration transaction 
models in recent years. It can supports two types of 
concurrency control mechanisms, the most 
noticeable one being the predicate/transform 
mechanism. In the model, each long duration 
transaction has its own data space, and the 
processing of a long duration transaction can be 
divided into two phases: the rehearsal phase and the 
performance phase. The rehearsal phase spans from 
the beginning of the transaction to the beginning of 
commit. In this phase, when the user requests the 
system to execute a sub-transaction, the system just 
execute it on the local data space of the long 
duration transaction, and the data in the database 
remains unchanged. The performance phase spans 
from the beginning of commit to the end of commit. 
In this phase, the system actually executes all sub-
transactions on the database in a batch. Each sub-
transaction is a predicate/transform pair: the 
predicate is the precondition of the sub-transaction, 
and the transform is the actual operation of the sub-
transaction. When the system actually executes each 
sub-transaction on the database, it first checks the 
predicate of the sub-transaction on the current 
database state. If the predicate is false, then the 
whole long duration transaction will fail. 

The key idea of the LRUOW model is to 
postpone the execution of the actions in a long 
duration transaction until the committing time of the 
transaction, and then execute these actions in a 
batch. Therefore, the long duration transaction can 
be converted into a traditional short transaction, so it 
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can have the same ACID semantics as the traditional 
transactions. For example, in a typically Internet 
shopping application, after a customer chooses a 
product and inputs the purchasing amount, the web 
application just saves the ordering information in the 
customer’s Http session rather than updating the 
database immediately. Only after the customer has 
chosen all desired products and completed the 
paying process, will the web application actually 
change the database. The customer’s shopping 
process can be considered as a long duration 
transaction, in which the concurrency control 
mechanism is predicate/transform. 

The main disadvantage of the 
predicate/transform mechanism is, it can’t ensure the 
priority of long duration transaction when it conflicts 
with traditional short transactions, but the cost of 
failure of the long duration transaction is much 
higher than that of the short transaction. What’s 
more, it can’t notify the user of the failure of a long 
duration transaction timely. For example, in the 
preceding Internet shopping application, after the 
customer finishes ordering a product, another 
transaction may change the stock of the product to 
an amount lower than the customer’s purchasing 
amount. But the customer is not aware of the 
change, he may continue to order other products, 
and can’t know the failure of his shopping session 
until the last minutes. 

To overcome the disadvantage of the 
predicate/transform mechanism and ensure the 
priority of long duration transactions, let’s take a 
look at a business process in a banking application. 
Assume a customer requests the bank to buying 
$1000 bonds for him. The bank will forward the 
request to a stockjobber, but the result of the deal 
can’t be known until the next day. For fear that the 
customer draw the money away from his account in 
the meantime, the bank will freeze part of the 
amount in the customer’s account, i.e., although the 
balance of the account is X, the amount that the 
customer can draw out is X-1000 (X ≥ 1000). Such a 
constraint on the data object is like a “lock” in the 
semantic layer. It doesn’t prohibit other transactions’ 
access to the data object, but requires that if other 
transactions change the value of the data object, the 
new value must satisfy certain condition. Therefore, 
it can ensure an operation will be successfully 
executed in the future. Our new transaction model is 
based on this practice. 

It should be noted that there has been various 
works on the semantics-based concurrency control 
protocols (Garcia-Molina 1983; Weikum 1991; 
Agrawal et al. 1993). In comparison with these 
works, our work focus on providing transaction 
support for the long running business processes, and 
we   combines the semantic constraints on database 

states with the multiple version techniques and the 
predicate/transform techniques to form a new 
transaction model. 

3  THE CONCEPT OF THE PP/T 
MODEL 

3.1 The Definition of Long Duration 
Transaction 

Our model takes the same approach as the saga 
model and defines the long duration transaction as a 
set of sub-transactions: 

Definition 1. A long duration transaction is 
defined as the following tuple: 

 lt= (ST, →) 

ST={st1, st2, …, stn}, it is the set of steps that 
comprise the long duration transaction. → is a 
partial order on ST that should be satisfied in the 
execution of the long duration transaction. 

We assume the concurrency-scheduling 
algorithm of the underlying traditional TP system is 
serializable, so an execution of the long duration 
transaction will form a total order on ST. 

An executing history of a long duration 
transaction can be denoted as: 

 st1 ° st2 ° … ° stn

We can give the following definition for each 
step of a long duration transaction: 

Definition 2. A step of a long duration 
transaction is defined as the following tuple: 

 sti = (pi, fi) 

In the definition, pi is the precondition of sti, and 
fi is the actual operation on the database. The 
predicate pi should be the necessary and sufficient 
condition for the success of sti, i.e.: 

 pi(S)  <==>  the success of sti

In the above expression, pi(S) means the value of 
the predicate pi on the database state S. 

When sti is executed alone, it can be treated as a 
transition on the database state. So we can define fi 
as a transition function on the database state: 

 S2 = fi (S1) 
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In the above expression, S1 is the database state 
before the execution of sti, and S2 is the database 
state after the execution of sti. 

3.2 Multiple Versions of Database 
State 

We use the multiple version technique to achieve the 
isolation of different long duration transactions 
when they are executed concurrently. Every long 
duration transaction has its own local data space, the 
data inside which is invisible to other transactions. 
In the rehearsal phase of a long duration transaction, 
when step sti wants to change data in the database, it 
copies the data from the database to its own local 
data space and changes the data inside the local data 
space, while the data in the actual database remain 
unchanged. It’s not until the performance phase that 
the operations are actually executed on the database. 

We call the state of the actual database as 
“global database state”. In the rehearsal phase, each 
long duration transaction can only see its own 
version of database state, not the global database 
state. The version of database state seen by a long 
duration transaction is the combination of the global 
database state and the state of the local data space of 
the transaction. 

We use LDi
lt to denote the state of the local data 

space at the beginning of step sti in lt. LDi
lt includes 

the data changed from st1 to sti-1. LD1
lt=Φ. We use 

Si
lt to denote the global database state at the 

beginning of step sti, and Vi
lt to denote the version of 

database state seen by lt at the beginning of step sti. 
Vi

lt is synthesized as following: 

 Vi
lt = LDi

lt override Si
lt

The operator override means that if a data object 
exists in the first operand, its value is got from the 
first operand; otherwise its value is got from the 
second operand. 

After the execution of sti, the state of the local 
data space changes from LDi

lt to LDi+1
lt, but the 

global database state remains unchanged: 

 fi( Vi
lt ) = LDi+1

lt override Si
lt

In the period between the end of sti and the 
beginning of sti+1, other transactions may change the 
global database state from Si

lt to Si+1
lt. Therefore, at 

the beginning of sti+1, the database state visible to lt 
(i.e., Vi+1

lt) is once again synthesized from LDi+1
lt 

and Si+1
lt. 

3.3 The PP/T Concurrency Control 
Mechanism 

For step sti in a long duration transaction to be 
successfully executed on database state S, pi must be 
held on S. Therefore, for a long duration transaction 
to be successfully committed, the database state in 
the performance phase should satisfy the predicate 
of every step, but the predicate/transform 
mechanism can’t ensure it. To overcome the 
drawback of the predicate/transform mechanism, we 
put forward a pessimistic predicate/transform (PP/T) 
concurrency control mechanism. 

In the PP/T mechanism, a constraint table is set 
up for the database, which includes all constraints 
that a consistent database state should satisfy. These 
constraints are like “semantic locks” on the data 
objects. When a long duration transaction finishes 
every step in the rehearsal phase, it put the 
precondition of the step into the constraint table. 
After that, when any transaction prepares to commit, 
the system firstly checks whether the new database 
state satisfies all constraints in the constraint table. If 
any constraint is not satisfied, the transaction is not 
allowed to commit. Therefore, in the performance 
phase of the long duration transaction, the 
preconditions of every step are satisfied, so the 
execution of a long duration transaction can be 
successfully completed. We call the original 
predicate/transform mechanism as optimistic 
predicate/transform mechanism (since it does not 
exert any constraints on the database state), and call 
the new constraint-based predicate/transform 
mechanism as pessimistic predicate/transform 
mechanism. 

In the rehearsal phase of a long duration 
transaction, for step sti to be successfully executed, 
pi must be satisfied on the transaction’s own version 
of database state, i.e., pi(Vi

lt)=true. Since Vi
lt is 

synthesized from LDi
lt and Si

lt, we can divide pi into 
two parts: one part involves the data in LDi

lt, 
denoted as pi

LD, and the other part doesn’t involve 
the data in LDi

lt, denoted as pi
S. Apparently, we can 

get the following conclusion: 

 pi(Vi
lt) => pi

S(Si
lt) 

Therefore, we can add pi
S into the constraint 

table of the database, so that later transactions will 
not violate the constraints. 

However, we can’t conclude pi
LD(Si

lt)=true from 
pi

LD(Vi
lt)=true, so we have to deal with pi

LD 
specially. Agrawal et al. (1993) has proposed the 
idea of a wp function that is helpful to solving this 
problem. Following is the definition of the wp 
function: 
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Definition 3. The function wp(st1, p2) is the 
weakest condition that should be held on the 
database state before the execution of st1, so that 
predicate p2 is true after the execution of st1. I.e.: 

 wp(st1, p2)(S) <==> p2 ( f1(S) ) 

According to Definition 3, we can get the 
following conclusion: 

 wp(st1 ° … ° sti-1, pi
LD)( S1

lt) <==> pi
LD (Vi

lt) 

The predicate wp(st1 ° … ° sti-1, pi
LD) is the 

weakest condition that should be held on S1
lt to 

ensure pi
LD (Vi

lt) = true. Therefore, we can firstly 
check whether predicate wp(st1 ° … ° sti-1, pi

LD) is 
true on the current global database state Si

lt. If it is 
not true, then step sti can’t be successfully executed, 
and the system will return an error message. If the 
predicate is true, the system will put the predicate 
into the constraint table, so that later transactions 
will not violate the constraints. 

However, the process of computing wp(st1 ° … ° 
sti-1, pi

LD) from pi
LD may be very difficult 

(sometimes even impossible) in practice. Therefore, 
we can weaken the PP/T mechanism to just 
recording pi

S in the constraint table, and don’t deal 
with pi

LD. In such case, the PP/T mechanism is still 
an improvement over the original 
predicate/transform mechanism, but it can’t strictly 
ensure the successful execution of the long duration 
transaction in the performance phase. 

3.4 The Behaviour of the Transaction 
Manager 

For a traditional TP system to support the PP/T 
model, we can add a new component called “long 
transaction manager” into the TP system. The long 
transaction manager takes charge of the management 
and execution of long duration transactions, while 
the traditional transaction manager takes charge of 
the management and execution of traditional short 
transaction. 

In the rehearsal phase of a long duration 
transaction, when a user requests the system to 
perform step sti, the long transaction manager takes 
the following actions (all these actions are 
encapsulated into a traditional short transaction): 
1. Check whether pi is true on the transaction’s 

version of database state Vi
lt. If pi(Vi

lt) is false, 
the execution fails and error messages will be 
returned. 

2. Record sti and relevant parameters in the 
operation log. 

3. Execute sti on the transaction’s local data space. 
All changed data are recorded in the 
transaction’s local data space, not in the actual 
database. 

4. Put piS into the constraint table of the database. 
5. Optionally, put wp(st1 ° … ° sti-1, piLD) into 

the constraint table of the database. 
When the user commits a long duration 

transaction, the long duration transaction goes into 
the performance phase. In this phase, the long 
transaction manager takes the following actions (all 
these actions are encapsulated into a traditional short 
transaction): 
1. Clear out all the constraints from the constraint 

table that are added by the current long duration 
transaction. 

2. Execute every step on the actual database 
according to the operation log. Before the 
execution of every step, the predicate of the step 
is checked on the current database state. If the 
predicate is false, the performance phase of the 
long duration transaction will fail. 

3. Delete the local data space of the long duration 
transaction after all steps being successfully 
finished. 
To support the long duration transaction, the 

traditional transaction manager should also change a 
little. In the committing phase of a traditional short 
transaction, the traditional transaction manager 
should check whether the new database state 
satisfies all constraints in the constraint table. If all 
constraints are satisfied, the transaction can commit 
as usual, otherwise the transaction will be rolled 
back. 

3.5 The Recovery Mechanism 

In the PP/T model, the local data space of the long 
duration transaction is persistent, so the recovery 
mechanism is relatively simple. There are two kinds 
of the recovery mechanism: backward recovery and 
forward recovery. Backward recovery (i.e., rollback) 
means to undo the effect of executed steps of a long 
duration transaction when a failure occurs. Forward 
recovery (e.g., the recovery after the system crash) 
means to recover the state of a long duration 
transaction to the most recent state so that the 
transaction can be resumed. 

When a failure occurs, an unfinished long 
duration transaction may be in one of the following 
states: 
a) At the interval between two steps. I.e., the 

previous step has finished and the next step 
doesn’t begin yet. At this stage, since all 
intermediate information is persistent in the local 
data space and the operation log, the system 
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needn’t do any work for the forward recovery. 
For the backward recovery, the system need to 
delete the local data space of the transaction, and 
clear out all the constraints that are added by the 
transaction from the constraint table. 

b) At the executing process of a step in the 
rehearsal phase. Since the executing process is 
encapsulated into a traditional transaction, the 
recovery work of this step is done by the 
recovery mechanism of the underlying 
traditional TP system. After that, the other 
recovery works are the same as stated in 1). 

c) At the executing process of the performance 
phase. Since the executing process is 
encapsulated into a traditional transaction, the 
recovery work of this phase is done by the 
recovery mechanism of the underlying 
traditional TP system. After that, the other 
recovery works are the same as stated in 1). 

4 PERFORMANCE ANALYSIS 

To evaluate the proposed PP/T model, we 
implemented it in a simulation environment and 
compared the simulation results with the LRUOW 
model.  

4.1 Simulation Environment 

In the simulation experiments, X traditional 
transactions and Y long duration transactions were 
generated and executed in 20 minutes, so that we 
could observer the performance of the PP/T model 
and the LRUOW model in a variety of simulated 
loads. The simulation program was developed in 
Java and was executed on a common desktop PC 
with an Intel Pentium IV CPU at 1.5GHz and 
256MB RAM running Windows 2000 Professional  

Our simulation scenario was a banking business 
system. Suppose there were N accounts in the 
database, the initial balance of each account being 
$5000.00. Each account allowed two kinds of 
operations: depositing and drawing. The balance of 
accounts couldn’t be lower than zero. If an operation 
would cause the balance of an account to be lower 
than zero, the operation would fail. The executing 
time of each operation was set to 5 ms. 

Suppose each traditional transaction was a 
transferring account process, including a depositing 
operation on an account and a drawing operation on 
another account. The transferring amount was 
randomly generated in the zone of (0, max_amount). 
If one of the operations in a transaction failed, the 
transaction would be rolled back. The beginning 

time of the traditional transactions was randomly 
generated in the period from 0 to 20 minutes. 

Suppose the traditional transaction manager used 
the strict 2PL scheduling protocol to manage 
concurrency and used the time-out mechanism to 
detect deadlocks. The time-out value was set to 
5000ms, and the timed-out transactions were rolled 
back. 

Suppose each long duration transaction was a 
kind of banking business process that needed multi-
people to coordinate and spanned several minutes. 
For example, when a customer required the bank to 
draw a bank draft for him, several steps should be 
performed by the bank clerks, such as recording the 
ledger, reviewing the ledger, getting authorization 
from the manger, inputting the draft information, 
reviewing the draft information, etc. In each step, a 
bank clerk executed a traditional short transaction. 
In our experiments, we supposed that each long 
duration transaction was composed of 5 sub-
transactions, and each sub-transaction was a 
transferring account business process. The duration 
time of each long duration transaction was set to 3 
minutes, and the beginning times of its sub-
transactions were randomly generated in the 
duration period of the long duration transaction. The 
beginning time of the long duration transactions was 
randomly generated in the period from 0 to 17 
minutes. 

4.2 Workload Parameters 

In the simulation experiment, we use the failing rate 
of long duration transactions to evaluate 
performance of the PP/T model and the LRUOW 
model. It’s the proportion of failed long duration 
transactions in all of the long duration transactions, 
reflecting the concurrency management ability of the 
long duration transaction models. 

In the PP/T model and the LRUOW model, the 
failing rate of long duration transactions may be 
affected by the following factors: 
a) The transferring amount. The amount was 

randomly generated in the zone of (0, 
max_amount). If the value of max_amount 
became larger, the drawing operations on 
accounts were more possible to fail, so the 
failing rate of long duration transactions would 
become larger. It influenced the probability of 
semantic conflicts between transactions. 

b) The number of accounts, i.e., the number of data 
objects shared by all transactions. It influenced 
the probability of concurrency conflicts of 
reading and writing operations between 
traditional transactions. 
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c) The number of traditional transactions. It 
influenced the probability of concurrency 
conflicts of reading and writing operations 
between traditional transactions. 

d) The number of long duration transactions. It 
influenced the probability of concurrency 
conflicts between long duration transactions. 

4.3 Simulation Results 

In the experiments, we took the maximum 
transferring amount, the number of accounts, the 
number of traditional transactions, and the number 
of long duration transactions as variables 
respectively, so that we could observe the failing 
rate of long duration transactions under different 
conditions. For each set of parameters, we 
repeatedly executed the simulation program for 30 
times and use the average result as the final 
simulation result. 

Fig. 1 shows the influence of maximum 
transferring amount on the failing rate of long 
duration transactions. In the figure, the X-axis 
represents the maximum transferring amount, and 
the Y-axis represents the failing rate of long duration 
transactions. The experiment parameters were as 
follows: the maximum transferring amount increased 
from $250.00 to $450.00, the number of accounts 
was 200, the number of traditional transactions was 
60000, and the number of long duration transactions 
was 300. From the figure we can see that the failing 
rate under the LRUOW model increased rapidly 
(from 4.71% to 19.05%) with the increment of 
maximum transferring amount. By contrast, the 
failing rate under the PP/T model increased very 
slowly (from 1.46% to 5.82%). This phenomenon 
could be explained by the fact that the PP/T model 
makes use of the semantic constraints on database 
states to improve its concurrency management 
ability, so with the probability of semantic conflicts 
of transactions increasing, the advantage of PP/T 
model became more and more obvious. 

Fig. 2 shows the influence of the number of 
accounts on the failing rate of long duration 
transactions. In the figure, the X-axis represents the 
number of accounts, and the Y-axis represents the 
failing rate of long duration transactions. The 
experiment parameters were as follows: the number 
of accounts decreased from 300 to 100, the 
maximum transferring amount was $350.00, the 
number of traditional transactions was 60000, and 
the number of long duration transactions was 300. 
From the figure we can see that the failing rate 
increased more rapidly under the LRUOW model 
(from 8.13% to 17.7%) than under the PP/T model 
(from 2.35% to 6.6%). 

Fig. 3 shows the influence of the number of the 
traditional transactions on the failing rate of long 

duration transactions. In the figure, the X-axis 
represents the number of the traditional transactions, 
and the Y-axis represents the failing rate of long 
duration transactions. The experiment parameters 
were as follows: the number of the traditional 
transactions increased from 50000 to 90000, the 
maximum transferring amount was $350.00, the 
number of accounts was 200, and the number of 
long duration transactions was 300. From the figure 
we can see that the failing rate under the LRUOW 
model increased moderately from 10.32% to 
15.01%, while the failing rate under the PP/T model 
increased slightly from 2.97% to 4.5%. 
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Fig. 4 shows the influence of the number of the 
long duration transactions on the failing rate of long 
duration transactions. In the figure, the X-axis 
represents the number of the long duration 
transactions, and the Y-axis represents the failing 
rate of long duration transactions. The experiment 
parameters were as follows: the number of the long 
duration transactions increased from 200 to 600, the 
maximum transferring amount was $350.00, the 
number of accounts was 200, and the number of 
traditional transactions was 60000. From the figure 
we can see that the number of long duration 
transactions has no obvious influence on the failing 
rate of long duration transactions under the LRUOW 
model. Under the PP/T model, the failing rate 
increased a little with the increment of the number of 
long duration transactions, from 2.6% to 4.71%. 

From the above simulation results we can see 
that the performance of the PP/T model is better than 
that of the LRUOW model, and the advantage of 
PP/T model is more obvious when there is a higher 
possibility of semantic conflicts between 
transactions. 

5 CONCLUSION 

In this paper, we proposed a new long duration 
transaction model — PP/T model. It can provide full 
transaction support for the long running business 
processes in enterprise applications. In comparison 
with the LRUOW model, the advantage of our 
model is that it can ensure the priority of long 
duration transactions, so that the failure rate of long 
duration transactions can be greatly decreased. 

The key idea of the PP/T model is to postpone 
the actions of a long duration transaction to the 
committing time, so that the long duration 
transaction can be converted into a traditional short 

transaction. At the same time, constraints are exerted 
on the database state to ensure that the postponed 
operations can be successfully executed in the 
committing time. Simulation results show that the 
model has sound concurrency management ability. 
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