
RAPID XML DATABASE APPLICATION DEVELOPMENT

Albrecht Schmidt
Aalborg University

9220 Aalborg Øst, Denmark

Kjetil Nørvåg
Norwegian University of Science and Technology

7491 Trondheim, Norway

Keywords: XML, databases, prototyping, design

Abstract: This paper proposes a rapid prototyping framework for XML database application development. By splitting
up the development process into several refinement steps while keeping the application programming interface
stable, the framework aims at rapid implementation of a prototype with a well-defined interface and a subse-
quent implementation of more advanced concepts like business rules in several steps. The refinement process
takes the form of incrementally adding domain-specific information to the application. This is achieved by
transgressing from general-purpose XML tools that do not support the definition and enforcement of con-
straints to frameworks that support domain-specific models and constraints such as E/R modeling. We have
employed this method in the development of an example application, and we give performance numbers that
illustrate the incremental improvements of each step.

1 INTRODUCTION

Since XML assumed the role as the premier data ex-
change format on the Internet, application designers
have increasingly been showing interest in coupling
XML technologies and large scale data management
techniques. One path to achieving this goal in the de-
velopment of new Web services is to modularize tasks
and to build on mature components: because Web ser-
vices are accessed through a well-defined interface
that hides the actual implementation of the service,
it is possible to split the front-end, i.e., the client ap-
plications, from the database back-end.

Internet information systems are usually imple-
mented as complex multi-tier architectures. Virtu-
ally any such system that has to deal with signifi-
cant amounts of data will utilize some kind of mass
storage system, most probably a database manage-
ment system (DBMS). The overall system architec-
ture depends very much on the kind of services the
mass storage back-end can deliver. Because, unfor-
tunately, the implementation of this very back-end is
a time-consuming task, it is desirable to split up de-
velopment into several steps. The first step usually
comprises the definition and export of an the inter-
face that client applications can use. If a SOAP inter-
face (Box et al., 2000) is to be implemented, standard

XML tools can be leveraged; they greatly facilitate
setting up a prototype that provides the necessary ser-
vices but without taking into account issues like effi-
ciency and consistency, which can be dealt with later.
We refer to such an approach as rapid prototyping.
According to (Kordon and Luqi, 2002) a prototype is
an executable model of a system that accurately re-
flects a chosen subset of its properties, such as dis-
play formats, computed results, or response times. In
the context of our work, this implies that the proto-
type implements an abstract programming interface
(API) but uses only standard, non-performance ori-
ented tools for the back-end, which is treated as a
black-box. In subsequent steps, the back-end is then
improved until it scales up to production levels.

Furthermore, prototyping (Kordon and Luqi, 2002)
is a technique which is generally desirable in software
engineering for a number of reasons. It helps to ab-
stract from low-level details and to blend the different
components of a system to work together. A proto-
type is then refined until it reaches production level.
To summarize:

1. Prototyping helps to understand the requirements
of a software systems early in the development pro-
cess: unnecessary requirements can be removed or
altered while other desiderata might be discovered.

2. Prototyping permits early feedback from users and

370
Schmidt A. and Nørvag K. (2004).
RAPID XML DATABASE APPLICATION DEVELOPMENT.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 370-375
DOI: 10.5220/0002615303700375
Copyright c© SciTePress



implementors alike; this can then be used for im-
provements in planning and implementation. Ide-
ally, the process will result in a feedback loop.

3. A point that is particularly important is that proto-
typing eases the integration of subsystems. Since
software systems, and especially Web-based ones,
consist of various logical and physical layers, it is
highly desirable to develop and improve the differ-
ent subsystem independently of each other as far as
possible.

In this paper we outline a framework for XML
database application development which addresses
these issues. In a stepwise refinement prototyping
process, we move from general-purpose XML tools
deployed in the first step to tools that allow domain
modeling in the refinement steps. The first step in the
development chain consists of using XQuery (Cham-
berlin et al., 2001) on a file-based storage back-
end. Subsequent steps include switching to a DBMS
with automated XML-to-database mapping, annota-
tions with domain knowledge, and, eventually, using
modeling techniques to both ensure efficient data ac-
cess as well as data integrity through the specification
of constraints. Thus, prototyping goes through several
refinement steps and employs more and more specific
tools, which is made possible by increasingly draw-
ing benefit from domain-knowledge. The final step is
then a database which does not consist of automated
mappings with surrogate identifiers anymore but of a
E/R-type data model (Thalheim, 2000). To achieve
this, we have defined a mapping language that en-
sures smooth interaction of XML tools and relational
databases. We have employed this development pro-
cess during development of an example application,
and we give performance numbers and improvements
for the prototype through the steps in the develop-
ment process. The implementation was carried out
in a number of student projects.

The organization of the rest of this paper is as fol-
lows. In Section 2 we give an overview of related
work. Section 3 describes the general layout of our
framework. In Section 4 we describe in detail the dif-
ferent steps of the development process. In Section 5
we present a number of measurements that reflect the
performance characteristics of the different steps and
hints at some trade-offs. to be considered. In Sec-
tion 6 we discuss the use of the framework in the con-
text of document-centric XML documents. Finally, in
Section 7, we conclude the paper and outline topics
for future research.

2 RELATED WORK

The general validity of rapid prototyping for XML ap-
plications has been demonstrated in various industry

F
r
o
n

te
n

d


BackendWWW

Figure 1: General setting of our research.

projects (see, e.g., (e-XMLmedia, )), although usually
only one prototype is developed in order to demon-
strate both the feasibility of the undertaking and the
user interface. In our framework, this is equivalent to
the first step as laid out below.

In (Orsini and Celentano, 2002), Orsini and Celen-
tano propose a development environment that can aid
data engineers in mapping between database schemas
and XML DTDs. This process is essentially bidirec-
tional: it enables data transfer between the two sides,
and the generation of programs and DTDs for execut-
ing, validating and safe-guarding the data exchange
process. Furthermore in (Florescu and A. Grünhagen,
2003), the authors present a language for implement-
ing middleware functionality like Web services that
could also play a role in the API specification that is
part of our framework.

With respect to databases, there have been sev-
eral studies on mapping from XML to relational ta-
bles, and how to query and store in a RDBMS based
on these mappings. For example, in (Florescu and
Kossmann, 1999), Florescu and Kossmann present
mappings from XML to general relational tables;
in (Schmidt et al., 2000), Schmidt et al. present a
data and an execution model that allow for efficient
storage and retrieval of XML documents in a rela-
tional database based on binary associations. The
main problem of mapping from XML to relational ta-
bles, is in order to achieve good performance differ-
ent mappings are needed for different data and work-
loads. In order to solve this problem, Bohannon et
al. (Bohannon et al., 2002) developed a cost-based
XML storage mapping engine that is based on mod-
els of XML schema, data statistics and workload tries
to find the best mapping for a given application ac-
cording to a cost model. In (Freire and Simèon, 2002)
the authors propose an implementation framework for
the implementation of these considerations. In (Shan-
mugasundaram et al., 1999), a mapping that ‘imitates’
E/R modeling on top of XML documents is presented;
it is a variation of one of the mapping we also use in
our implementation and performance study.

The reverse process, generating and publishing
XML data from relational sources in addressed, for
example, in the Agora system (Manolescu et al.,
2000); there, XML is employed as the user interface
format, while relational tuples are used to represent

RAPID XML DATABASE APPLICATION DEVELOPMENT

371



the data inside the query processor. This approach
resembles the final refinement step of our architec-
ture. SilkRoute (Fernández et al., 2002) is a middle-
ware system for publishing XML data from relational
databases. The XML view is defined using a declar-
ative query language. It accepts XML-QL queries
over the XML view, and translates them into SQL
queries. The results are tagged before being deliv-
ered to the user as XML data. An efficient publish-
ing technique with a detailed discussion is also pre-
sented in (Shanmugasundaram et al., 2000). (Grabs
et al., 2002) present a complementary study of how to
extend an arbitrary XML-to-relations mapping with
transactions.

3 GENERAL SYSTEM
ARCHITECTURE

This section describes the general setting of our re-
search. We are concerned with the implementation of
very general Web-service architectures. The general
model can then easily be adapted to more specific set-
tings.

We assume a general client-server architecture, as
illustrated in Figure 1: clients issue requests to servers
by means of XML-based SOAP documents. The im-
portant feature of our architecture is now that the
front-end is well-defined: it is exactly the set of docu-
ments allowed by the XML request or input language.
The implementation of the back-end can now be done
in a black-box fashion; we are free to change it as long
as it still implements the specification imposed by the
input documents. In the rest of the paper we will focus
on a particular way of successively and systematically
altering the implementation of the back-end.

The tasks of the individual components are as fol-
lows:

1. The front-end parses the incoming XML-
documents,

2. verifies certain basic constraints such as those im-
posed by XML Schema or others that may be
checked without the application context, and

3. generates input for the back-end by pre-processing
the XML documents and converting them to cus-
tom data structures which are forwarded to the
back-end. In later steps, the front-end has to pro-
vide certain basic transactional services and thus
plays a role in ensuring the transactional integrity
of the distributed system.

4. The back-end provides storage of data, query capa-
bilities, and possible additional database features.
Again, the back-end has to be front-end-aware to
some degree, so that, e.g., it is able to report back
whether a transaction was successful or not.

While the transmission of data is done entirely in
XML, we needed to extend XQuery slightly to add
basic transactional functionality.

4 THE PROTOTYPING PROCESS
IN DETAIL

This section describes the step-wise refinement pro-
cess in more detail. The basic idea is to start out with
a very general framework to which we add more and
more knowledge in order to obtain better performance
and ensure data integrity.

The prototyping process consists of a number of
steps which are sketched in Figure 2. The focal point
is to move from an architecture that fulfills basic con-
formance requirements imposed by the SOAP lan-
guage and that is fast to implement, to an optimized
system with many bells and whistles that can be tuned
for maximum performance, maintainability, and in-
tegrity. In each step, the codebase of the prototype is
refined by switching from general tools to tools that
require additional semantic modeling. Ideally, the ad-
ditional functionality results in more control over the
system and data. In the spirit of many software engi-
neering methodologies, it also provides opportunities
for identifying problems, bottlenecks and insufficien-
cies of the architecture so that this feedback can be
used to a constant improvement of the codebase even
before moving on to the next step. It can also be im-
plemented as an iterative process, where a solution to
the problems is proposed and evaluated at the current
step before entering the next step.

Technically, the four different development stages
of our framework can be outlined like this:

1. XML data are stored in flat files; against these
an XQuery processor issues interface-compliant
queries as demanded by the API specification.
Thus, the individual components are only very
lightly coupled.

2. This is the first step where a relational database
management system is used as back-end. XML
documents are shredded and inserted into relations
using a mapping technique in the spirit of (Shan-
mugasundaram et al., 1999). Queries are executed
on the tables generated by the mapping.

3. The main purpose of this step is to add domain
knowledge for enforcing data integrity and opti-
mizing query execution. The range of technolo-
gies that are employed in this step comprise in-
dexes, constraints, views and triggers. Note that
in contrast to Step 2 the generation of the database
schema is not fully automatic anymore. The do-
main knowledge has to be added by the database
administrator.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

372



XQuery

Flat

Files

Constraints

Triggers

1) 2) 3) 4)

Relations

XML Shredder
Mapping

Language
XML Shredder

Indexes

Figure 2: System architecture in the different development steps.

4. In this step, the database administrator uses the
knowledge gathered in the first three steps to de-
sign a database lay-out that reflects the require-
ments of applications. In contrast to the first step,
which only leverages native XML tools, there is
no use of XML internally; this step could there-
fore be called ‘native relational’ with full leverage
of relational tools and opportunities for storage and
query optimization techniques common in the re-
lational world. With this step, all automation with
respect to deriving database schemas is abandoned.
The database administrators have full control over
the database and is free to deploy the tools of their
choice.

Since the system uses relational back-ends in Steps
2–4, database administrators can use the knowledge
they gathered in previous projects and, especially in
Step 4, do not require additional training. So the over-
all idea of our framework results in a smooth transi-
tion from document-oriented XML technology to the
more scalable relational technology in the back-end
of the system. This proves useful since many XML
products currently do not scale to massive data and,
on the other hand, because in this way the integration
of legacy relational systems is facilitated.

In the remainder of this section we discuss the in-
dividual steps in more detail.

1. Flat-File Storage In our context, the solution that
is fastest to implement is to store the XML data in a
flat file repository, and use a freely available XQuery
processor for querying the data. By storing the XML
data in flat files, the way to add information to a
database is to create a file containing the data and
registering it. Updates are performed by deleting and
creating a new file. This is simple to implement but
expensive in terms of performance and integrity main-
tenance. On the other hand, it captures well the spirit
of XML query languages like XQuery because the in-
dividual XML document is the point of reference in
these languages.

One of the most obvious disadvantages of this so-
lution is query efficiency. Every time a query is run,

the actual files have to be scanned and parsed into an
internal representation. Although indexing could be
possible, it is not well supported, and will typically
not be a part of this step. Transactions can be sup-
ported by the locking mechanisms that the repository
provides. However, the semantics and granularities of
the locking system are usually not aligned with the
requirements of XML.

An alternative or complementary approach to im-
plementing this step would be to take advantage of
RDBMS data types that are database equivalents files,
i.e., BLOBs, CLOBs or even XML objects. This way,
the standard tools of RDBMSs can be leveraged to
implement recovery, indexing, replication, etc. How-
ever, updates still tend to be expensive because the
storage granularity is not fine enough to update only
document fragments.

2. Decomposition into Relations This refinement
step features a different storage model. XML data
are now decomposed into relations. An XML shred-
der decomposes XML documents into rows and ta-
bles. Currently, the decomposition scheme is in-
dependent of the query workload. In the future,
this step may also generate workload-aware storage
schemes (Freire and Simèon, 2002).

The benefits of the architecture in this step com-
pared with the architecture in Step 1, are the availabil-
ity of a query language like SQL which scales better,
and that the ACID properties are supported and can be
used. This includes support for recovery and support
for fine-granularity locking of data and thus higher
concurrency.

A potential problem with the architecture in this
step is that, according to the storage scheme used, an
XML document is decomposed into many tables, and
many joins are needed in order to reconstruct a docu-
ment. However, in many cases reconstruction of doc-
uments will not be necessary, so that this problem will
not be an issue.

At this stage in the prototyping process a few
queries will have been issued so that further optimiza-
tion will be possible in the next step:

RAPID XML DATABASE APPLICATION DEVELOPMENT

373



3. Optimization of Decomposition The architec-
ture of the previous step has potential for both
high concurrency and scalability. However, in or-
der to achieve high query performance and consis-
tency, additional features supported by the RDBMS
should be employed. These include indexes, con-
straints and triggers. This step offers opportuni-
ties for adding them. Typically constraints like
database-wide uniqueness of XML attributes and
reference constraints are candidates for declaring
domain-knowledge to the database and thus ensure
some important integrity constraints. Although in-
dexes probably are also to be used in this step, their
main use is not to improve query performance but
constraint enforcement. In this sense, they are used
on an ad-hoc basis.

4. No Use of XML Internally For some projects,
the prototype developed in Step 3 will be the final one.
It will satisfy many requirements. However, in gen-
eral it will not scale up to the requirements of a pro-
duction system. When an application manages large
amounts of data or features a query-intensive work-
load, it is probable that more fine-tuning is needed
than possible in the framework of Steps 1–3. In such
a case, it will be necessary to develop the prototype
into a system that does not use XML internally but
that makes semantic data modeling possible and that
can take advantage of the semantics.

To bridge this gap, we have designed a map-
ping language between the XML and the relational
database schemas. In practice, the process resembles
the way E/R CASE tools are used and can be sup-
ported by a Graphical User Interface (GUI). The lan-
guage is used to glue the relational database schema to
the elements of XML documents and, at the same, to
enforce database-wide constraints on the documents.
For example, if information from an XML person
record is to be inserted into the RDBMS but the So-
cial Security Number of the person is already present
in the database, then the XML document has to be
rejected. In this way the language is used to enforce
constraints that are difficult to enforce in XML-only
scenarios.

5 PERFORMANCE
IMPRESSIONS

Figure 3 sketches some performance numbers from
Steps 1–3 when different database schemas are im-
plemented, illustrating the cost of loading data into
different schemas (top figure) and the cost of query-
ing (bottom figure).

Note that adding domain knowledge to ensure in-
tegrity does not always enhance performance by it-

self. Especially, Figure 3(a) shows that automatic
constraint enforcement brings about additional update
costs. However, the gain is certainty that the database
is in a consistent state. Transaction-oriented appli-
cation are a prominent case when this is useful. In
practice, domain-specific modeling in Step 4 is when
performance gains are most probable.

6 DOCUMENT-CENTRIC
DOCUMENTS

XML documents are frequently divided into two
categories: document-centric and data-centric.
Document-centric XML document are often docu-
ments meant for human consumption, like books,
papers, etc., while data-centric are typically doc-
uments meant for computer consumption/data
transport, and that are highly structured.

Our focus in this paper has been data-centric docu-
ments. However, it should be noted that the proposed
framework is also applicable in the case of mainly
document-centric documents and/or repository ser-
vices.1 In that case, it can be beneficial to store the
documents in BLOBs in the database (as one of the
alternatives in Step 1), and rely on associated indexes
to improve performance. Thus, Step 2 is not appli-
cable, but instead performance improvements simi-
lar to some of those proposed for Step 3 can be im-
plemented. For XML documents special indexes are
provided by the actual commercial database systems.
Supported indexes typically include path indexes, as
well as text-index variants.

7 CONCLUSIONS AND FUTURE
WORK

We have described a framework for XML database
application development. The focal point of the de-
velopment framework is that it enables rapid proto-
typing by deploying easy-to-setup general purpose
tools in the first steps and then refines the application
by adding more and more domain knowledge in sub-
sequent steps until it is possible to use semantic mod-
eling. Technically, the four steps comprise flat-file
back-end storage, automatic XML document shred-
ding, custom XML document shredding, and, as a fi-
nal step, the transition to a relational back-end.

Directions for future research include investiga-
tions into how to utilize XML Schema and Semantic
Web information for optimizing of Steps 2–4 in our

1In a repository service a stored document is returned,
in contrast to a query-generated document as in the more
general case.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

374



(a) Bulkload (b) Sequential Scan

Figure 3: Two performance figures.

framework. Of particular importance is the verifica-
tion of queries and mappings in the fourth step where
manual interaction can introduce errors. Furthermore,
the mapping language mentioned in Step 4 currently
produces more locks than necessary and therefore im-
pedes on parallelism. A more detailed analysis of
the declarative locking mechanism could lead to im-
proved code after a query rewriting phase.

ACKNOWLEDGMENTS

We would like to thank our students Jens Gorm
Rye-Andersen, Lasse Jensen, Jimmy Nielsen, Søren
Nøhr Christensen and Mads Wiederholt Jensen for
their implementation work and the performance mea-
surements.

REFERENCES

Bohannon, P., Freire, J., Roy, P., and Simèon, J. (2002).
From XML Schema to Relations: A Cost-Based Ap-
proach to XML Storage. In Proceedings of the IEEE
International Conference on Data Engineering.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H., Thatte, S., and Winer,
D. (2000). Simple Object Access Protocol (SOAP)
1.1. Available at http://www.w3.org/TR/
SOAP/.

Chamberlin, D., Florescu, D., Robie, J., Siméon, J., and
Stefanescu, M. (2001). XQuery: A Query Language
for XML. available at http://www.w3.org/TR/
xquery.

e-XMLmedia. Services summary. Version 3.0. Available at
http://www.e-xmlmedia.com/sol/.

Fernández, M., Kadiyska, Y., Suciu, D., Morishima, A., and
Tan, W.-C. (2002). SilkRoute: a framework for pub-
lishing relational data in XML. ACM TODS, 27(4).

Florescu, D. and A. Grünhagen, D. K. (2003). XL: a plat-
form for Web Services. In Biennial Conference on
Innovative Data Systems Research.

Florescu, D. and Kossmann, D. (1999). Storing and Query-
ing XML Data using an RDMBS. IEEE Data Engi-
neering Bulletin, 22(3).

Freire, J. and Simèon, J. (2002). Adaptive XML Shredding:
Architecture, Implementation, and Challenges. In Ef-
ficiency and Effectiveness of XML Tools and Tech-
niques and Data Integration over the Web, VLDB
2002 Workshop EEXTT and CAiSE 2002 Workshop
DTWeb. Revised Papers, volume 2590 of Lecture
Notes in Computer Science. Springer.

Grabs, T., Böhm, K., and Schek, H.-J. (2002). XMLTM: ef-
ficient transaction management for XML documents.
In Proceedings of the Eleventh International Confer-
ence on Information and Knowledge Management,
pages 142–152.

Kordon, F. and Luqi (2002). An Introduction to Rapid Sys-
tem Prototyping. IEEE Transactions on Software En-
gineering, 28(9).

Manolescu, I., Florescu, D., Kossmann, D., Xhumari, F.,
and Olteanu, D. (2000). Agora: Living with XML
and Relational. In Proceedings of the International
Conference on Very Large Data Bases.

Orsini, R. and Celentano, A. (2002). A workbench for pro-
totyping XML data exchange. In Proceedings of Sis-
temi Evoluti per Basi di Dati (SEBD).

Schmidt, A., Kersten, M., Windhouwer, M., and Waas,
F. (2000). Efficient relational storage and retrieval
of XML documents. In The World Wide Web and
Databases, Third International Workshop WebDB
2000.

Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M.,
Lindsay, B., Pirahesh, H., and Reinwald, B. (2000).
Efficiently Publishing Relational Data as XML Docu-
ments. In 2000, pages 65–76.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., De-
Witt, D. J., and Naughton, J. F. (1999). Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities. In Proceedings of the Inter-
national Conference on Very Large Data Bases, pages
302–314.

Thalheim, B. (2000). Fundamentals of Entity-Relationship
Modeling (Foundations of Database Technology).
Springer.

RAPID XML DATABASE APPLICATION DEVELOPMENT

375


