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Abstract:  The traditional transaction models are not suited to real-time database systems (RTDBSs). Indeed, many 
current applications managed by these systems necessitate a kind of transactions where some of the ACID2  
properties must be ignored or adapted.  In this paper, we propose a real-time concurrency control protocol 
and an adaptation of the Two-Phase Commit Protocol based on the nested transaction model where a nested 
transaction is viewed as a collection of both essential and non-essential subtransactions:  the essential 
subtransaction has a firm3  deadline, and the non-essential one has a soft4  deadline.  We show through 
simulation results, how our protocol based on this assumption, allows better concurrency between 
transactions and between subtransactions of the same transaction, enhancing then the success ratio5  and the 
RTDBS performances, i.e., more transactions may meet their deadlines.  

 

1The authors would like to thank the French Research Ministry and the University of Le Havre for their financial support 
(ACI No 1055 and RTT project, respectively).  
2Atomicity, Consistency, Isolation, Durability 
3A transaction is aborted as soon as it misses its deadline 
4A transaction may provide useful results after its deadline, but the Quality of Service (QoS) decreases 
5Number of transactions that meet their deadline/Total number of transactions 

1 INTRODUCTION 

RTDBSs are generally defined as the database 
systems supporting time-constrained transactions.  
The timing constraints are usually expressed in the 
form of transaction deadlines.  The first requirement 
in RTDBSs is to maintain the database consistency 
by enforcing the concurrency control between the 
active transactions.  The second requirement is to 
satisfy the real-time constraints of the transactions in 
order to meet their individual deadlines.  In the 
earlier models of traditional RTDBSs, a transaction 
is considered as a single flat unit of tasks [Haritsa 
and Ramamritham, 1997, Ramamritham, 1993], 
which consists of a sequence of primitive actions 
(e.g., read and write of data-items). If one operation 
of the transaction fails, then the whole work done by 
transaction is rolled-back.  Most of the previous 
work [Bernstein and Goodman, 1987, Krzyzagorski 

and Morzy, 1995] on RTDBSs have used flat 
transaction as the underlying transaction model, but 
these approaches are not suitable to many new 
database applications.  Some applications have 
changed from traditional applications to more 
advanced and complex applications, such as 
computer aided design (CAD), cooperative 
applications and multimedia applications.   

The nested transaction model, originally 
introduced to increase transaction reliability in 
distributed systems [Moss, 1986], is proved to be 
more appropriate for these new applications.  The 
first nested transaction model has been proposed by 
Moss [Moss, 1986]. A nested transaction is 
considered as a hierarchy of subtransactions, and 
each subtransaction may contain either other 
subtransactions, or the atomic database operations 
(read or write). Furthermore, a nested transaction is 
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a collection of subtransactions that compose the 
whole atomic execution unit. 

A nested transaction is represented as a tree, 
called transaction tree [Moss, 1986, Chen and 
Gruenwald, 1994, El-Sayed and El-Sharkawi, 2001, 
Reddy and Kitsuregawa, 2000]. A nested transaction 
offers more decomposable execution units and finer 
grained control over concurrency and recovery than 
flat transaction.  Nested transactions provide intra-
parallelism, (subtransactions running in parallel) as 
well as better failure recovery options, i.e., when a 
subtransaction fails and aborts, there is a chance to 
restart it by its parent instead of restarting the whole 
transaction (which is the case of flat transactions). 
Even though, the major driving force in using nested 
transaction is the need to model long-lived 
applications, nested transactions may also be 
efficiently used to model short transactions (like in 
the context of real-time database applications, with 
specific characteristics).  

The main performance goal of RTDBSs 
scheduling notably for firm and soft transaction is to 
minimize the number of transactions that miss their 
deadlines.  So, a performance metric in assessing the 
system performance in RTDBMSs is the 
"throughput". Throughput is defined in terms of the 
number of transactions that complete successfully, 
which is also called the "success ratio". A 
transaction is considered to be successfully 
completed if it runs completely and commits its 
result before its deadline. 

When multiple users access a database 
simultaneously, their data operations have to be 
coordinated in order to prevent incorrect results and 
to preserve the shared data consistency.  This 
activity is called concurrency control [Abbott, 1988, 
Pavlova and Nekrestyanov, 1997], which has always 
been a major aspect of computing systems.  In recent 
years, different real-time concurrency control 
protocols have been proposed to both flat and nested 
transactions.  In this paper, we consider the case of 
nested transactions model and its application to real-
time transactions. 

The remaining of this paper is organized as 
follows.  In the next Section, we describe a kind of 
nested transactions models.  In Section 3, we present 
some real-time concurrency control protocols for 
nested transactions and we introduce our 
concurrency control protocol for real-time nested 
transactions.  The protocol implementation is 
described in Section 4 with some simulation results.  
Finally, in Section 5, we conclude and give some 
future research directions. 

2 NESTED TRANSACTION 
MODELS 

The main types of the various models of nested 
transactions are (1) closed nested transaction [Moss, 
1986] and (2) open nested transaction [Madria and 
Bhargava, 2000]. In the closed nested transaction 
model [Moss, 1986, El-Sated and El-Sharkawi, 
2001], a subtransaction’s effect cannot be seen 
outside its parent’s view.  Originally introduced by 
Moss [Moss, 1986], a commitment of a 
subtransaction is conditional upon the commitments 
of its parent, while in the open nested transaction 
model [Madria and Bhargava, 2000], the 
subtransactions can execute and commit 
independently.  The model provides non-strict 
execution by taking into account the commutative 
properties of the semantics of the operations at each 
level of data abstraction.  A subtransaction is 
allowed to release its locks before the higher-level 
transaction has committed.  The leaf level locks are 
released early only if the semantics of the operations 
is known.  In many applications, the semantics of 
transactions cannot be known and hence, it is 
difficult to provide non-strict execution.  So, in this 
paper, we consider a closed nested transaction 
model.  Nested transaction extends the flat 
transaction by allowing a transaction to invoke 
atomic transactions as well as atomic operations.  In 
a nested transaction model, a transaction may 
contain any number of subtransactions, which again 
may be composed of any number of subtransactions, 
conceivably resulting in an arbitrary deep hierarchy 
of nested transactions. 

The root transaction, which is not enclosed in 
any transaction, is called the top-level transaction 
(TLT). Transactions having subtransactions are 
called parent transactions (PTs), and their 
subtransactions are their children.  Leaf transactions 
(LTs) are those transactions with no child. 

The ancestor (resp.  descendant) relation is the 
reflexive transitive closure of the parent (resp.  
child) relation.  We will use the term superior (resp.  
inferior) for the non-reflexive version of the ancestor 
(resp.  descendant). The children of one parent are 
called siblings. The set of descendants of a 
transaction together with their parent/child 
relationships is called the transaction’s hierarchy.  
The hierarchy of a TLT can be represented by a so-
called transaction tree. The nodes of the tree 
represent PTs, and the edges illustrate the 
parent/child relationships between the related 
transactions.  In the transaction tree shown in 
Figure.1, T1 represents TLT or root.  

– T1 is a root or TLT,  
– T2 and T3 are children of T1,  
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– T2 and T3 are siblings,  
– T4 and T5 are children of T2,  
– T8,T9,T5,T6 and T7 are leaf transactions,  
– T8’s ancestors are T1,T2,T4 and T8,  
– T8’s superiors are T1,T2 and T4,  
– T2’s descendants are T8,T9,T4,T5 and T2,  
– T2’s inferiors are T8,T9,T4 and T5.  
 

 
Figure 1:  Example of Transaction Tree 

 
In the nested transaction model, N-ACID 

properties are fulfilled for top-level transactions, 
while only a subset of them are defined for 
subtransactions.  Subtransactions appear atomic to 
the surrounding transactions and may commit and 
abort independently.  A transaction is not allowed to 
commit until all its children have terminated.  
However, if a child is aborted or fails, their parent is 
not required to abort.  Instead, the parent is allowed 
to perform its own recovery.  In order to meet its 
goal, the parent may choose one of the following 
actions [Moss, 1986, Chen and Gruenwald, 1994] :  
(1) to ignore the condition, (2) to retry the 
subtransaction, (3) to initiate another subtransaction 
that implements an alternative action, (4) to abort the 
subtransaction. 

The durability of the committed subtransaction 
effects depends on the outcome of its superiors.  
Even if a subtransaction commits, the abort of one of 
its superiors will undo its effects.  The updates of a 
subtransaction become permanent only when the 
enclosing TLT commits.  In the nested transaction 
model defined in [Moss, 1986], the work can only be 
done by the leaf-level transactions.  Higher level 
transaction only organizes the control flow and 
determines when to invoke which subtransaction.  
Two main differences exist between the various 
models of nested transactions [Guerraoui, 1995]:  (1) 
whether or not a parent can directly access a data-
item and (2) whether or not it can execute 
concurrently with its children.  In this paper, we 
consider only the model where such accesses are 
reserved only to leaf transactions. 

3 REAL-TIME CONCURRENCY 
CONTROL PROTOCOLS 

3.1 Towards existing protocols 

Several protocols are used for synchronizing the 
execution of nested transactions and therefore for 
ensuring isolated execution of transactions.  A 
number of concurrency control algorithms are 
proposed in the literature and used widely.  
Concurrency control protocols may be divided into 
two groups [Abbott, 1988, Krzyzagorski and Morzy, 
1995, Pavlova and Nekrestyanov, 1997]: (1) 
optimistic and (2) pessimistic approaches.  The main 
feature of the pessimistic approach is to prevent 
possible conflicts.  A transaction may access a data-
item only if this will not cause possible conflict 
situations later.  If it is not possible immediately, the 
transaction should wait until it becomes possible.  
Most pessimistic algorithms are based on locks 
[Bernstein and Goodman, 1987, Harder and 
Rothermel, 1993, Resende and Abbadi, 1994]. The 
classical pessimistic algorithm is the widely used 
two phase locking (2PL) protocol and its variants, 
such as 2PL-HP [Chen and Gruenwald, 1994 and 
Pavlova and Nekrestyanov, 1997]. In nested 
transaction model, 2PL is an upward inheritance of 
locks [Harder and Rothermel, 1993]. There exist 
other protocols using the same approach such as:  
priority abort protocol [Chen and Gruenwald, 1994] 
and priority inheritance protocol [Bernstein and 
Goodman, 1987]. In [Harder and Rothermel, 1993], 
a concept of downward inheritance is introduced to 
improve the parallelism within the nested 
transaction.  The pre-write operation is introduced in 
[Madria and Bhargava, 2000] to increase 
concurrency in a nested transaction processing 
environment.  This model allows some particular 
subtransactions to release their locks before their 
ancestor transaction commits. 

In optimistic approach [Krzyzagorski and 
Morzy, 1995], transaction execution consists of 
three phases:  read, validation and write.  During the 
read phase, transactions work in parallel without any 
verification and each transaction writes to its own 
space.  The validation phase consists of the 
checking-up of the existing conflicts.  After a 
successful validation, it is possible to commit the 
transaction and to copy its local space to the 
database.  In the last few years, some researches that 
merge both optimistic and pessimistic distributed 
approaches have been done, such as hybrid 
concurrency control for the nested transaction 
proposed in [Pavlova and Nekrestyanov, 1997]. This 
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protocol acts as an optimistic protocol for 
transactions from different transaction trees and as 
pessimistic protocol inside a single transaction tree.  
In [Reddy and Kitsuregawa, 2000] the speculative 
nested locking protocol is proposed.  In speculative 
nested transaction approach, a (sub)transaction 
releases a lock on the data-item when it produces 
after-image. In this approach a transaction carries 
out multiple executions by reading both before-
image and after-image of the preceding transaction. 
In this section, we review the basic two-phase 
locking protocol for nested transaction (2PL-NT). 
We begin to explain some used terms and we 
sumarize this mechanism in the following.  

– R-mode: Read mode, shared mode,  
– W-mode: Write mode, exclusive mode.  

R1 :  T may acquire a lock in R-mode if  
– no other transaction holds the lock in 

W-mode, and  
– all transactions that retain the lock 

in W-mode are its ancestors.  
R2 :  T may acquire a lock in W-mode if  

– no other transaction holds the lock 
in W- or R-mode, and  

– all transactions that retain the lock 
in W- or R-mode are its ancestors.  

R3 :  When T commits, its parent inherits its 
(held or retained) locks.  After that, T’s 
parent retains the locks in the same mode 
(W or R) in which T has hold or retained 
the locks previously.  

R4 :  When T aborts, it releases all locks it 
holds or retains.  If any of its superiors 
holds or retains any of these locks, then 
continue to do so.  

If a top-level transaction commits, then all its locks 
are released. 

Note that the inheritance may cause a 
transaction to retain several locks on the same 
object. 

3.2 Motivation 

In our model, nested transaction consists of both 
essential and non-essential subtransactions.  If an 
essential subtransaction aborts, the rest of the 
transaction has to be aborted, whereas, aborting a 
non-essential subtransaction is allowed.  It should be 
noted that a non-essential subtransaction could block 
the essential subtransaction by holding the crucial 
lock.  Since, each subtransaction acts as a unit of 
work to complete for resources, then, it should 
possess its own deadline.  Deadline assignment for 
subtransactions is beyond the purpose of this paper.  
So far, we assume that each subtransaction has a 
deadline.  Then, we assume that an essential 

subtransaction is firm and a non-essential 
subtransaction is soft.  In that case, the whole time is 
given to the essential transaction since (1) the non-
essential transaction’s missing deadline is not fatal, 
(2) the non-essential transaction’s shorter deadline 
may increase its priority and possibly finish earlier, 
increasing the essential transaction’s chance to meet 
its deadline. To illustrate our model, we will use as 
an example of a control/display system.  This system 
gives us a clear idea on the concept of essential and 
non-essential transactions. 

For example, the Control subtransaction may be 
declared as essential.  If a Control subtransaction 
commits, the nested transaction does so.  However, 
if the display subtransaction cannot be committed, 
then the Control/Display nested transaction may still 
successfully complete. 

3.3 Our protocol 

In this section, we describe our protocol and give an 
example that shows how the inter-transactions and 
intra-transactions concurrency are increased, which 
improves the objective of RTDBMS. In our 
approach, the locking protocol offers 4 modes of 
synchronizations:   

– The (ER-mode):  Essential Read,  
– The (EW-mode):  Essential Write,  
– The (NER-mode):  Non-Essential Read,  
– The (NEW-mode):  Non-Essential Write.  

Our protocol adapted from the basic 2PL-NT 
provides the following rules. 

Rule 1:  If T is an essential transaction:   
a) T may acquire a lock in ER-mode if  

– No other transaction holds the 
lock in EW-mode, and  

– All transactions that retain the 
lock in EW-mode are its 
ancestors.  

b) T may acquire a lock in EW-mode if  
– No other transaction holds the 

lock in EW- or ER-mode, and  
– All transactions that retain the 

lock in EW- or ER-mode are 
its ancestors.  

Rule 2:  If T is a non-essential transaction  
a) T may acquire a lock in NER-mode if  

– No other transaction that 
holds the lock in EW- and 
NEW-mode, and  

– All transactions that retain the 
lock in NEW- mode are its 
ancestors.  

b) T may acquire a lock in NEW if  
– No other transaction holds the 

lock in EW-, NEW-, ER- and 
NER-mode  
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– All transactions that retain the 
lock in NEW- or NEW-mode 
are its ancestors.  

Rule 3:  When T commits, its parent 
inherits its (held or retained) locks.  After 
that, T’s parent retains the lock in the same 
mode in which T held or retained the lock 
previously.  

Rule 4:  When T aborts, it releases all helds 
or retained locks.  If any of its superiors 
holds or retains any of these locks, then they 
continue to do so.  

The ER-mode permits multiple transactions to 
share a data-item.  Furthermore, an essential and 
non-essential transaction could acquire the lock at a 
time.  If a non-essential transaction holds a lock in 
NEW-mode while an essential transaction requests a 
lock in ER-mode on the same data-item, then the 
conflict is resolved in favor of the essential 
transaction and the non-essential transaction is 
aborted and restarted.  If an essential transaction 
requests a lock in EW-mode on the same data-item, 
then all conflicts with a non-essential transaction are 
resolved in favor of the essential transaction.  A 
retained EW-, ER-, NEW- and NER-locks, indicate 
that transactions outside the hierarchy of the retainer 
can not acquire the lock, but the descendants of the 
retainer potentially can do, i.e., if a transaction T 
retains an EW-lock, then all non-descendants of T 
cannot hold the lock in any mode (EW or ER). Table 
1 shows the compatibility matrix between requesting 
and locking modes.  The rows are the holding locks, 
and the columns are the requested locks. 

 
Table 1:  Compatibility matrix 

3.3.1 Example 1 

In the following example and for the simplicity 
reasons, we assume that the runtime for a write or a 
read operation is 10 seconds.  Every subtransaction 
is characterized by its arrival time and its own 
deadline.  If a subtransaction is essential then its 
deadline is firm, otherwise it is soft.  We will use 
both protocols (a basic 2PL-NT and our protocol) to 
the same example in order to illustrate the 
performance of our protocol.  For a basic 2PL-NT, 
all subtransactions are assumed to be essential. 

 

 
 
 

Figure 2: T2: essential subtransaction,  
T3: non-essential subtransaction,  

Nested transaction model increases intra-transactions 
concurrency 

 
 Figures 2 and 3 summarize the example for a basic 
2PL-NT (in this case, all subtransactions in Figure 2 
are essential). 

– At t=0, T3 acquires and obtains a lock in W-
mode on a data-item v,  

– 3s afterward, T4 appears.  It is blocked until 
the termination of T3. As its deadline is at 
15s then it misses its deadline and aborts.  
Then the top-level transaction does so.  

 

 
 

Figure 3: Scheduling in the basic 2PL-NT (example 1) 
Figures 2 and 4 summarize the example with our 

protocol. 
All transaction that retain 
the lock are its ancestors 

All transaction that retain 
the lock are not its ancestors 

 
 

ER EW NER NEW ER EW NER NEW 
ER Yes Yes -- -- Yes No Yes Yes 

EW Yes Yes -- -- No No Yes Yes 

NER -- -- Yes Yes No No Yes No 

NEW -- -- Yes Yes No No No No 

 
– T3 runs until the arrival of T4,  
– T4 obtains a lock on the data-item v in EW-

mode,  
– T3 aborts,  
– T4 meets its deadline,  
– T3 is restarted, as its deadline is soft, 

completes its execution but the quality of 
service (QoS) decreases,  

– The top-level transaction may choose 
between the following two cases for the 
commitment:   

(a) Commit as soon as T4 commits (if a 
conflict may exist with other essential 
subtransactions),  

(b) Commit after the termination of T3.  
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Figure 4: Scheduling mechanism in our protocol  
(example 1) 

3.3.2 Example 2 

Figures 5 and 6 summarize the example for a basic 
2PL-NT (in this case, all subtransactions in Figure 5 
are essential).  

– At first, T3 requests and obtains a lock in W-
mode on data-item u,  

– 3s afterward, T7 is initiated and is blocked (it 
requests a lock held by T3) until termination 
of T3. Consequently, it can not meet its 
deadline,  

– T7 aborts and the top-level transaction does 
so.  

 

 
 

Figure 5: T2 and T7: essential subtransactions, T3 and T8: 
non-essential subtransactions,  

Nested transaction model increases concurrency inter-
transactions. 

 

 
 

Figure 6:  Scheduling in the basic 2PL-NT (example 2) 
 
Figures 5 and 7 summarize the example for our 
protocol.  
 

 
 

Figure 7: Scheduling mechanism in our protocol 
(example 2) 

In this way, our protocol increases both inter- and 
intra-transactions concurrency of nested 
transactions. 

4 IMPLEMENTATION 

In this paper, we have used an adaptation of the 
Two-Phase Commit protocol.  Briefly, the 2PC 
protocol consists of Voting and Completion 
according phase to the outcome of vote. For more 
details see [Haritsa and Ramamritham, 2000]. 

4.1 Basic functionalities 

Recall that the nested transaction consists of the 
TLT, PT and LT. Both TLT and PT need a 
coordinator.  A coordinator for a subtransaction will 
provide an operation to open a subtransaction.  The 
coordinator of the TLT communicates with the 
coordinators of the subtransactions for which it’s the 
immediate parent.  In the first phase of the 2PC 
protocol, each coordinator sends CanCommit 
message to each of later, with in turn passes them to 
the coordinators of their child transaction (and so on, 
down the tree). Note that each TLT is characterized 
by its identifier TID. Thus each subtransaction 
possesses its own identifier that must be an 
extension of its parent’s TID. Therefore, the 
coordinator of each parent transaction has a list of its 
children.  When a nested transaction provisionnally 
commits, it reports its status and the status of its 
descendants to its parent.  Eventually, the TLT 
receives a list of all the subtransactions in the tree, 
together with the status of them.  The TLT plays the 
role of the coordinator in the 2PC, and the 
participant list consists of the coordinators of all 
subtransactions in the tree which have 
provisionnally committed and that not have aborted 
ancestors.  These participants will ask to vote on the 
outcome.  If they vote to commit, then they must 
prepare their transactions by saving the state of the 
data in the permanent storage. 

The second phase of the 2PC is the same as for 
the non-nested case, but it must be adapted for our 
model.  The coordinator collects the votes and then 
informs the participants:   

1. If all essential subtransactions and non-
essential subtransactions vote YES, the 
coordinator and the participants will be 
committed,  

2. If one or more essential subtransactions votes 
NO, then the TLT aborts its subtransactions,  

3. If all essential subtransactions vote YES and 
one or more non-essential subtransactions 
vote NO, then the coordinator according its 
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deadline and the eventual conflicts with 
essential subtransactions in other transaction 
tree, chooses between the following two 
cases :   

(a) To commit the essential 
subtransactions and to abort the non-
essential subtransactions, or  

(b) To commit after the termination of 
the non-essential subtransactions ( in 
this case, the QoS decreases).  

4.2 Simulation results 

Simulation results show that the success ratio is 
better when using the new protocol than when using 
the basic 2PL-NT (see Figure8). The enhancement is 
about 17%.  

 
Figure 8: Our protocol vs the basic 2PL-NT 

 

Even though, we notice that the proposed 
algorithm presents some restrictions (because it does 
not authorize the serialization between the essential 
and non-essential transactions). Our approach 
compared to the basic nested transaction enhances 
the success ratio.  Hence, this algorithm seems more 
advantageous for real-time applications.  
Furthermore, our approach allows the adaptation of 
the N-ACID properties for real-time context.  For 
instance, the top-level transaction does not satisfy 
the Atomicity property because if a non-essential 
transaction fails then it does not force its parent to 
do so.  Therefore, only the N-CID properties are 
fulfilled for top-level transaction in our work.  In 
addition, the effects of subtransaction do not become 
permanent until its top level transaction commits.  
Thus, a subtransaction does not satisfy the durability 
property. 

In summary, the simulation results show the 
usefulness of our assumptions, allowing more 
transactions to meet their deadlines. 

5 CONCLUSION AND FUTURE 
WORK 

In this paper, we have proposed a concurrency 
control protocol approach based on 2PL and an 
adaptation of the 2PC protocol for nested transaction 
model in real-time systems.  We have focused on 
achieving a high degree of both inter-transactions 
and intra-transaction concurrency within nested 
transactions.  In the proposed model, each 
transaction is composed of both essential and non-
essential (sub)transactions.  When a conflict appears, 
it is resolved in favor of the essential 
(sub)transaction.  If an essential transaction aborts, 
then the rest of the transaction has to be aborted.  
However, if a non-essential transaction cannot 
commit, then the nested transaction can still be 
successfully completed. 

In a nested transaction model, if a parent 
transaction aborts, then all its children do so.  To 
enhance the degree of intra-transactions parallelism, 
for the future work we will use the PROMPT 
protocol mechanism [Haritsa and Ramamritham, 
2000] which was used for flat transactions and 
where the isolation property is relaxed, it allows the 
lending of data by uncommited transaction, and 
using a probabilistic model to analyze the real-time 
nested transactions.  The obtained probabilistic 
model would allow to determine weights to assign to 
subtransactions and to determine the threshold value 
which indicate whether the subtransaction is 
essential or not.  
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