
ENHANCING THE SUCCESS RATIO OF DISTRIBUTED
REAL-TIME NESTED TRANSACTIONS1

M. Abdouli, B. Sadeg, L. Amanton and A. Berred
Laboratoires LIH, LMAH, UFR des Sciences et Techniques du Havre,

25 rue P. Lebon, BP 540, 76058 Le Havre cedex, FRANCE

Key words: Nested Transaction, Distributed System, Concurrency Control, RTDBS

Abstract: The traditional transaction models are not suited to real-time database systems (RTDBSs). Indeed, many
current applications managed by these systems necessitate a kind of transactions where some of the ACID2
properties must be ignored or adapted. In this paper, we propose a real-time concurrency control protocol
and an adaptation of the Two-Phase Commit Protocol based on the nested transaction model where a nested
transaction is viewed as a collection of both essential and non-essential subtransactions: the essential
subtransaction has a firm3 deadline, and the non-essential one has a soft4 deadline. We show through
simulation results, how our protocol based on this assumption, allows better concurrency between
transactions and between subtransactions of the same transaction, enhancing then the success ratio5 and the
RTDBS performances, i.e., more transactions may meet their deadlines.

1The authors would like to thank the French Research Ministry and the University of Le Havre for their financial support
(ACI No 1055 and RTT project, respectively).
2Atomicity, Consistency, Isolation, Durability
3A transaction is aborted as soon as it misses its deadline
4A transaction may provide useful results after its deadline, but the Quality of Service (QoS) decreases
5Number of transactions that meet their deadline/Total number of transactions

1 INTRODUCTION

RTDBSs are generally defined as the database
systems supporting time-constrained transactions.
The timing constraints are usually expressed in the
form of transaction deadlines. The first requirement
in RTDBSs is to maintain the database consistency
by enforcing the concurrency control between the
active transactions. The second requirement is to
satisfy the real-time constraints of the transactions in
order to meet their individual deadlines. In the
earlier models of traditional RTDBSs, a transaction
is considered as a single flat unit of tasks [Haritsa
and Ramamritham, 1997, Ramamritham, 1993],
which consists of a sequence of primitive actions
(e.g., read and write of data-items). If one operation
of the transaction fails, then the whole work done by
transaction is rolled-back. Most of the previous
work [Bernstein and Goodman, 1987, Krzyzagorski

and Morzy, 1995] on RTDBSs have used flat
transaction as the underlying transaction model, but
these approaches are not suitable to many new
database applications. Some applications have
changed from traditional applications to more
advanced and complex applications, such as
computer aided design (CAD), cooperative
applications and multimedia applications.

The nested transaction model, originally
introduced to increase transaction reliability in
distributed systems [Moss, 1986], is proved to be
more appropriate for these new applications. The
first nested transaction model has been proposed by
Moss [Moss, 1986]. A nested transaction is
considered as a hierarchy of subtransactions, and
each subtransaction may contain either other
subtransactions, or the atomic database operations
(read or write). Furthermore, a nested transaction is

233
Abdouli M., Sadeg B., Amanton L. and Berred A. (2004).
ENHANCING THE SUCCESS RATIO OF DISTRIBUTED REAL-TIME NESTED TRANSACTIONS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 233-240
DOI: 10.5220/0002615002330240
Copyright c© SciTePress

a collection of subtransactions that compose the
whole atomic execution unit.

A nested transaction is represented as a tree,
called transaction tree [Moss, 1986, Chen and
Gruenwald, 1994, El-Sayed and El-Sharkawi, 2001,
Reddy and Kitsuregawa, 2000]. A nested transaction
offers more decomposable execution units and finer
grained control over concurrency and recovery than
flat transaction. Nested transactions provide intra-
parallelism, (subtransactions running in parallel) as
well as better failure recovery options, i.e., when a
subtransaction fails and aborts, there is a chance to
restart it by its parent instead of restarting the whole
transaction (which is the case of flat transactions).
Even though, the major driving force in using nested
transaction is the need to model long-lived
applications, nested transactions may also be
efficiently used to model short transactions (like in
the context of real-time database applications, with
specific characteristics).

The main performance goal of RTDBSs
scheduling notably for firm and soft transaction is to
minimize the number of transactions that miss their
deadlines. So, a performance metric in assessing the
system performance in RTDBMSs is the
"throughput". Throughput is defined in terms of the
number of transactions that complete successfully,
which is also called the "success ratio". A
transaction is considered to be successfully
completed if it runs completely and commits its
result before its deadline.

When multiple users access a database
simultaneously, their data operations have to be
coordinated in order to prevent incorrect results and
to preserve the shared data consistency. This
activity is called concurrency control [Abbott, 1988,
Pavlova and Nekrestyanov, 1997], which has always
been a major aspect of computing systems. In recent
years, different real-time concurrency control
protocols have been proposed to both flat and nested
transactions. In this paper, we consider the case of
nested transactions model and its application to real-
time transactions.

The remaining of this paper is organized as
follows. In the next Section, we describe a kind of
nested transactions models. In Section 3, we present
some real-time concurrency control protocols for
nested transactions and we introduce our
concurrency control protocol for real-time nested
transactions. The protocol implementation is
described in Section 4 with some simulation results.
Finally, in Section 5, we conclude and give some
future research directions.

2 NESTED TRANSACTION
MODELS

The main types of the various models of nested
transactions are (1) closed nested transaction [Moss,
1986] and (2) open nested transaction [Madria and
Bhargava, 2000]. In the closed nested transaction
model [Moss, 1986, El-Sated and El-Sharkawi,
2001], a subtransaction’s effect cannot be seen
outside its parent’s view. Originally introduced by
Moss [Moss, 1986], a commitment of a
subtransaction is conditional upon the commitments
of its parent, while in the open nested transaction
model [Madria and Bhargava, 2000], the
subtransactions can execute and commit
independently. The model provides non-strict
execution by taking into account the commutative
properties of the semantics of the operations at each
level of data abstraction. A subtransaction is
allowed to release its locks before the higher-level
transaction has committed. The leaf level locks are
released early only if the semantics of the operations
is known. In many applications, the semantics of
transactions cannot be known and hence, it is
difficult to provide non-strict execution. So, in this
paper, we consider a closed nested transaction
model. Nested transaction extends the flat
transaction by allowing a transaction to invoke
atomic transactions as well as atomic operations. In
a nested transaction model, a transaction may
contain any number of subtransactions, which again
may be composed of any number of subtransactions,
conceivably resulting in an arbitrary deep hierarchy
of nested transactions.

The root transaction, which is not enclosed in
any transaction, is called the top-level transaction
(TLT). Transactions having subtransactions are
called parent transactions (PTs), and their
subtransactions are their children. Leaf transactions
(LTs) are those transactions with no child.

The ancestor (resp. descendant) relation is the
reflexive transitive closure of the parent (resp.
child) relation. We will use the term superior (resp.
inferior) for the non-reflexive version of the ancestor
(resp. descendant). The children of one parent are
called siblings. The set of descendants of a
transaction together with their parent/child
relationships is called the transaction’s hierarchy.
The hierarchy of a TLT can be represented by a so-
called transaction tree. The nodes of the tree
represent PTs, and the edges illustrate the
parent/child relationships between the related
transactions. In the transaction tree shown in
Figure.1, T1 represents TLT or root.

– T1 is a root or TLT,
– T2 and T3 are children of T1,

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

234

– T2 and T3 are siblings,
– T4 and T5 are children of T2,
– T8,T9,T5,T6 and T7 are leaf transactions,
– T8’s ancestors are T1,T2,T4 and T8,
– T8’s superiors are T1,T2 and T4,
– T2’s descendants are T8,T9,T4,T5 and T2,
– T2’s inferiors are T8,T9,T4 and T5.

Figure 1: Example of Transaction Tree

In the nested transaction model, N-ACID

properties are fulfilled for top-level transactions,
while only a subset of them are defined for
subtransactions. Subtransactions appear atomic to
the surrounding transactions and may commit and
abort independently. A transaction is not allowed to
commit until all its children have terminated.
However, if a child is aborted or fails, their parent is
not required to abort. Instead, the parent is allowed
to perform its own recovery. In order to meet its
goal, the parent may choose one of the following
actions [Moss, 1986, Chen and Gruenwald, 1994] :
(1) to ignore the condition, (2) to retry the
subtransaction, (3) to initiate another subtransaction
that implements an alternative action, (4) to abort the
subtransaction.

The durability of the committed subtransaction
effects depends on the outcome of its superiors.
Even if a subtransaction commits, the abort of one of
its superiors will undo its effects. The updates of a
subtransaction become permanent only when the
enclosing TLT commits. In the nested transaction
model defined in [Moss, 1986], the work can only be
done by the leaf-level transactions. Higher level
transaction only organizes the control flow and
determines when to invoke which subtransaction.
Two main differences exist between the various
models of nested transactions [Guerraoui, 1995]: (1)
whether or not a parent can directly access a data-
item and (2) whether or not it can execute
concurrently with its children. In this paper, we
consider only the model where such accesses are
reserved only to leaf transactions.

3 REAL-TIME CONCURRENCY
CONTROL PROTOCOLS

3.1 Towards existing protocols

Several protocols are used for synchronizing the
execution of nested transactions and therefore for
ensuring isolated execution of transactions. A
number of concurrency control algorithms are
proposed in the literature and used widely.
Concurrency control protocols may be divided into
two groups [Abbott, 1988, Krzyzagorski and Morzy,
1995, Pavlova and Nekrestyanov, 1997]: (1)
optimistic and (2) pessimistic approaches. The main
feature of the pessimistic approach is to prevent
possible conflicts. A transaction may access a data-
item only if this will not cause possible conflict
situations later. If it is not possible immediately, the
transaction should wait until it becomes possible.
Most pessimistic algorithms are based on locks
[Bernstein and Goodman, 1987, Harder and
Rothermel, 1993, Resende and Abbadi, 1994]. The
classical pessimistic algorithm is the widely used
two phase locking (2PL) protocol and its variants,
such as 2PL-HP [Chen and Gruenwald, 1994 and
Pavlova and Nekrestyanov, 1997]. In nested
transaction model, 2PL is an upward inheritance of
locks [Harder and Rothermel, 1993]. There exist
other protocols using the same approach such as:
priority abort protocol [Chen and Gruenwald, 1994]
and priority inheritance protocol [Bernstein and
Goodman, 1987]. In [Harder and Rothermel, 1993],
a concept of downward inheritance is introduced to
improve the parallelism within the nested
transaction. The pre-write operation is introduced in
[Madria and Bhargava, 2000] to increase
concurrency in a nested transaction processing
environment. This model allows some particular
subtransactions to release their locks before their
ancestor transaction commits.

In optimistic approach [Krzyzagorski and
Morzy, 1995], transaction execution consists of
three phases: read, validation and write. During the
read phase, transactions work in parallel without any
verification and each transaction writes to its own
space. The validation phase consists of the
checking-up of the existing conflicts. After a
successful validation, it is possible to commit the
transaction and to copy its local space to the
database. In the last few years, some researches that
merge both optimistic and pessimistic distributed
approaches have been done, such as hybrid
concurrency control for the nested transaction
proposed in [Pavlova and Nekrestyanov, 1997]. This

ENHANCING THE SUCCESS RATIO OF DISTRIBUTED REAL-TIME NESTED TRANSACTIONS

235

protocol acts as an optimistic protocol for
transactions from different transaction trees and as
pessimistic protocol inside a single transaction tree.
In [Reddy and Kitsuregawa, 2000] the speculative
nested locking protocol is proposed. In speculative
nested transaction approach, a (sub)transaction
releases a lock on the data-item when it produces
after-image. In this approach a transaction carries
out multiple executions by reading both before-
image and after-image of the preceding transaction.
In this section, we review the basic two-phase
locking protocol for nested transaction (2PL-NT).
We begin to explain some used terms and we
sumarize this mechanism in the following.

– R-mode: Read mode, shared mode,
– W-mode: Write mode, exclusive mode.

R1 : T may acquire a lock in R-mode if
– no other transaction holds the lock in

W-mode, and
– all transactions that retain the lock

in W-mode are its ancestors.
R2 : T may acquire a lock in W-mode if

– no other transaction holds the lock
in W- or R-mode, and

– all transactions that retain the lock
in W- or R-mode are its ancestors.

R3 : When T commits, its parent inherits its
(held or retained) locks. After that, T’s
parent retains the locks in the same mode
(W or R) in which T has hold or retained
the locks previously.

R4 : When T aborts, it releases all locks it
holds or retains. If any of its superiors
holds or retains any of these locks, then
continue to do so.

If a top-level transaction commits, then all its locks
are released.

Note that the inheritance may cause a
transaction to retain several locks on the same
object.

3.2 Motivation

In our model, nested transaction consists of both
essential and non-essential subtransactions. If an
essential subtransaction aborts, the rest of the
transaction has to be aborted, whereas, aborting a
non-essential subtransaction is allowed. It should be
noted that a non-essential subtransaction could block
the essential subtransaction by holding the crucial
lock. Since, each subtransaction acts as a unit of
work to complete for resources, then, it should
possess its own deadline. Deadline assignment for
subtransactions is beyond the purpose of this paper.
So far, we assume that each subtransaction has a
deadline. Then, we assume that an essential

subtransaction is firm and a non-essential
subtransaction is soft. In that case, the whole time is
given to the essential transaction since (1) the non-
essential transaction’s missing deadline is not fatal,
(2) the non-essential transaction’s shorter deadline
may increase its priority and possibly finish earlier,
increasing the essential transaction’s chance to meet
its deadline. To illustrate our model, we will use as
an example of a control/display system. This system
gives us a clear idea on the concept of essential and
non-essential transactions.

For example, the Control subtransaction may be
declared as essential. If a Control subtransaction
commits, the nested transaction does so. However,
if the display subtransaction cannot be committed,
then the Control/Display nested transaction may still
successfully complete.

3.3 Our protocol

In this section, we describe our protocol and give an
example that shows how the inter-transactions and
intra-transactions concurrency are increased, which
improves the objective of RTDBMS. In our
approach, the locking protocol offers 4 modes of
synchronizations:

– The (ER-mode): Essential Read,
– The (EW-mode): Essential Write,
– The (NER-mode): Non-Essential Read,
– The (NEW-mode): Non-Essential Write.

Our protocol adapted from the basic 2PL-NT
provides the following rules.

Rule 1: If T is an essential transaction:
a) T may acquire a lock in ER-mode if

– No other transaction holds the
lock in EW-mode, and

– All transactions that retain the
lock in EW-mode are its
ancestors.

b) T may acquire a lock in EW-mode if
– No other transaction holds the

lock in EW- or ER-mode, and
– All transactions that retain the

lock in EW- or ER-mode are
its ancestors.

Rule 2: If T is a non-essential transaction
a) T may acquire a lock in NER-mode if

– No other transaction that
holds the lock in EW- and
NEW-mode, and

– All transactions that retain the
lock in NEW- mode are its
ancestors.

b) T may acquire a lock in NEW if
– No other transaction holds the

lock in EW-, NEW-, ER- and
NER-mode

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

236

– All transactions that retain the
lock in NEW- or NEW-mode
are its ancestors.

Rule 3: When T commits, its parent
inherits its (held or retained) locks. After
that, T’s parent retains the lock in the same
mode in which T held or retained the lock
previously.

Rule 4: When T aborts, it releases all helds
or retained locks. If any of its superiors
holds or retains any of these locks, then they
continue to do so.

The ER-mode permits multiple transactions to
share a data-item. Furthermore, an essential and
non-essential transaction could acquire the lock at a
time. If a non-essential transaction holds a lock in
NEW-mode while an essential transaction requests a
lock in ER-mode on the same data-item, then the
conflict is resolved in favor of the essential
transaction and the non-essential transaction is
aborted and restarted. If an essential transaction
requests a lock in EW-mode on the same data-item,
then all conflicts with a non-essential transaction are
resolved in favor of the essential transaction. A
retained EW-, ER-, NEW- and NER-locks, indicate
that transactions outside the hierarchy of the retainer
can not acquire the lock, but the descendants of the
retainer potentially can do, i.e., if a transaction T
retains an EW-lock, then all non-descendants of T
cannot hold the lock in any mode (EW or ER). Table
1 shows the compatibility matrix between requesting
and locking modes. The rows are the holding locks,
and the columns are the requested locks.

Table 1: Compatibility matrix

3.3.1 Example 1

In the following example and for the simplicity
reasons, we assume that the runtime for a write or a
read operation is 10 seconds. Every subtransaction
is characterized by its arrival time and its own
deadline. If a subtransaction is essential then its
deadline is firm, otherwise it is soft. We will use
both protocols (a basic 2PL-NT and our protocol) to
the same example in order to illustrate the
performance of our protocol. For a basic 2PL-NT,
all subtransactions are assumed to be essential.

Figure 2: T2: essential subtransaction,
T3: non-essential subtransaction,

Nested transaction model increases intra-transactions
concurrency

 Figures 2 and 3 summarize the example for a basic
2PL-NT (in this case, all subtransactions in Figure 2
are essential).

– At t=0, T3 acquires and obtains a lock in W-
mode on a data-item v,

– 3s afterward, T4 appears. It is blocked until
the termination of T3. As its deadline is at
15s then it misses its deadline and aborts.
Then the top-level transaction does so.

Figure 3: Scheduling in the basic 2PL-NT (example 1)
Figures 2 and 4 summarize the example with our

protocol.
All transaction that retain
the lock are its ancestors

All transaction that retain
the lock are not its ancestors

ER EW NER NEW ER EW NER NEW
ER Yes Yes -- -- Yes No Yes Yes

EW Yes Yes -- -- No No Yes Yes

NER -- -- Yes Yes No No Yes No

NEW -- -- Yes Yes No No No No

– T3 runs until the arrival of T4,
– T4 obtains a lock on the data-item v in EW-

mode,
– T3 aborts,
– T4 meets its deadline,
– T3 is restarted, as its deadline is soft,

completes its execution but the quality of
service (QoS) decreases,

– The top-level transaction may choose
between the following two cases for the
commitment:

(a) Commit as soon as T4 commits (if a
conflict may exist with other essential
subtransactions),

(b) Commit after the termination of T3.

ENHANCING THE SUCCESS RATIO OF DISTRIBUTED REAL-TIME NESTED TRANSACTIONS

237

Figure 4: Scheduling mechanism in our protocol
(example 1)

3.3.2 Example 2

Figures 5 and 6 summarize the example for a basic
2PL-NT (in this case, all subtransactions in Figure 5
are essential).

– At first, T3 requests and obtains a lock in W-
mode on data-item u,

– 3s afterward, T7 is initiated and is blocked (it
requests a lock held by T3) until termination
of T3. Consequently, it can not meet its
deadline,

– T7 aborts and the top-level transaction does
so.

Figure 5: T2 and T7: essential subtransactions, T3 and T8:
non-essential subtransactions,

Nested transaction model increases concurrency inter-
transactions.

Figure 6: Scheduling in the basic 2PL-NT (example 2)

Figures 5 and 7 summarize the example for our
protocol.

Figure 7: Scheduling mechanism in our protocol
(example 2)

In this way, our protocol increases both inter- and
intra-transactions concurrency of nested
transactions.

4 IMPLEMENTATION

In this paper, we have used an adaptation of the
Two-Phase Commit protocol. Briefly, the 2PC
protocol consists of Voting and Completion
according phase to the outcome of vote. For more
details see [Haritsa and Ramamritham, 2000].

4.1 Basic functionalities

Recall that the nested transaction consists of the
TLT, PT and LT. Both TLT and PT need a
coordinator. A coordinator for a subtransaction will
provide an operation to open a subtransaction. The
coordinator of the TLT communicates with the
coordinators of the subtransactions for which it’s the
immediate parent. In the first phase of the 2PC
protocol, each coordinator sends CanCommit
message to each of later, with in turn passes them to
the coordinators of their child transaction (and so on,
down the tree). Note that each TLT is characterized
by its identifier TID. Thus each subtransaction
possesses its own identifier that must be an
extension of its parent’s TID. Therefore, the
coordinator of each parent transaction has a list of its
children. When a nested transaction provisionnally
commits, it reports its status and the status of its
descendants to its parent. Eventually, the TLT
receives a list of all the subtransactions in the tree,
together with the status of them. The TLT plays the
role of the coordinator in the 2PC, and the
participant list consists of the coordinators of all
subtransactions in the tree which have
provisionnally committed and that not have aborted
ancestors. These participants will ask to vote on the
outcome. If they vote to commit, then they must
prepare their transactions by saving the state of the
data in the permanent storage.

The second phase of the 2PC is the same as for
the non-nested case, but it must be adapted for our
model. The coordinator collects the votes and then
informs the participants:

1. If all essential subtransactions and non-
essential subtransactions vote YES, the
coordinator and the participants will be
committed,

2. If one or more essential subtransactions votes
NO, then the TLT aborts its subtransactions,

3. If all essential subtransactions vote YES and
one or more non-essential subtransactions
vote NO, then the coordinator according its

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

238

deadline and the eventual conflicts with
essential subtransactions in other transaction
tree, chooses between the following two
cases :

(a) To commit the essential
subtransactions and to abort the non-
essential subtransactions, or

(b) To commit after the termination of
the non-essential subtransactions (in
this case, the QoS decreases).

4.2 Simulation results

Simulation results show that the success ratio is
better when using the new protocol than when using
the basic 2PL-NT (see Figure8). The enhancement is
about 17%.

Figure 8: Our protocol vs the basic 2PL-NT

Even though, we notice that the proposed
algorithm presents some restrictions (because it does
not authorize the serialization between the essential
and non-essential transactions). Our approach
compared to the basic nested transaction enhances
the success ratio. Hence, this algorithm seems more
advantageous for real-time applications.
Furthermore, our approach allows the adaptation of
the N-ACID properties for real-time context. For
instance, the top-level transaction does not satisfy
the Atomicity property because if a non-essential
transaction fails then it does not force its parent to
do so. Therefore, only the N-CID properties are
fulfilled for top-level transaction in our work. In
addition, the effects of subtransaction do not become
permanent until its top level transaction commits.
Thus, a subtransaction does not satisfy the durability
property.

In summary, the simulation results show the
usefulness of our assumptions, allowing more
transactions to meet their deadlines.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed a concurrency
control protocol approach based on 2PL and an
adaptation of the 2PC protocol for nested transaction
model in real-time systems. We have focused on
achieving a high degree of both inter-transactions
and intra-transaction concurrency within nested
transactions. In the proposed model, each
transaction is composed of both essential and non-
essential (sub)transactions. When a conflict appears,
it is resolved in favor of the essential
(sub)transaction. If an essential transaction aborts,
then the rest of the transaction has to be aborted.
However, if a non-essential transaction cannot
commit, then the nested transaction can still be
successfully completed.

In a nested transaction model, if a parent
transaction aborts, then all its children do so. To
enhance the degree of intra-transactions parallelism,
for the future work we will use the PROMPT
protocol mechanism [Haritsa and Ramamritham,
2000] which was used for flat transactions and
where the isolation property is relaxed, it allows the
lending of data by uncommited transaction, and
using a probabilistic model to analyze the real-time
nested transactions. The obtained probabilistic
model would allow to determine weights to assign to
subtransactions and to determine the threshold value
which indicate whether the subtransaction is
essential or not.
REFERENCES

A.A. El-Sayed, H. H. and El-Sharkawi, M. (2001). it
effects of shaping characteristics on the performance
on nested transactions. Information and Software
Technology, 43: 579–590.

Chen, Y. and Gruenwald, L. (1994). Research issues for a
real-time nested transaction. In 2nd Workshop on
Real-Time Applications, pages 130–135.

Guerraoui, R. (1995). Nested transaction : Reviewing the
coherence contract. Elsevier Sciences, 84: 161–172.

Harder, D. and Rothermel, D. (1993). Concurrency control
issues in nested transactions. VLDB journal, 2(1): 74–
93.

Harista, J. and Ramamritham, K. (1997). Real-time
database systems in the new millenium. Real-Time
Systems Journal, 19(3).

Haritsa, J. and Ramamritham, K. (2000). The prompt real-
time commit protocol. IEEE Transactions on Parallel
and Distributed Systems, 11(2).

ENHANCING THE SUCCESS RATIO OF DISTRIBUTED REAL-TIME NESTED TRANSACTIONS

239

Krzyzagorski, P. and Morzy, T. (1995). Optimistic
concurrency algorithm with dynamic serialization
adjustment for firm deadline real-time datadase
system. In 2nd International Workshop on advances in
Databases and Information Systems, volume 1, pages
21–28.

Moss, J. (1986). Nested Transactions: an Approach to
Reliable Distributed Computing. PhD thesis,
University of Massachusetts.

P.A. Bernstein, V. H. and Goodman, N. (1987).
Concurrency Control and Recovery in Database
Systems. Addison - Wesley.

Pavlova, E. and Nekrestyanov, I. (1997). Concurrency
control protocol for nested transactions in real-time
databases. In First East-European Symposium on
Advances in Databases and Information Systems, St-
Petersbur.

R. Abbot, G.-M. (1988). Scheduling real-time
transactions: a performance evaluation. In 14th
international conference on VLDB, pages 1–12.

Ramamritham, K. (1993). Real-time databases.
Distributed and Parallel Databases, 1(2).

Reddy, P. K. and Kitsuregawa, M. (2000). Speculation
based nested locking protocol to increase the
concurrency of nested transactions. In Press, I., editor,
International Database Engineering and Application
symposium, pages 18–28, Yokohama, Japan.

Resende, R. and Abbadi, A. (1994). On the serializability
theorem for nested transactions. Information
Processing Letters, 50(4).

S.K. Madria, S.N. Maheshwari, B. C. and Bhargava, B.
(2000). An open and safe nested transaction model:
Concurrency and recover. System and Software, 55:
151–165.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

240

