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Abstract: Database indexes are the search engines for database management systems. The B+-tree is one of the most
widely used data structures and provides an efficient index. An efficient implementation is crucial for a B+-
tree index. Our B+-tree index is designed to be a container in the style of the C++ Standard Template Library
(STL) and implemented efficiently using design patterns and generic programming techniques.

1 INTRODUCTION

A database is any organized collection of informa-
tion. An index is an auxiliary data structure intended
to help speed up the retrieval of information in re-
sponse to certain search conditions. To achieve this
goal, a specialized handcrafted index is a good way
to support a specific database application in a spe-
cific domain using domain-specific access methods.
However, these specialized access methods are usu-
ally hand-coded from scratch. A specialized index
may have better code efficiency and performance but
the tradeoffs are development time and cost. The ef-
fort required to implement and maintain them is high.

Another choice is to develop a framework for a
family of indexes, and reuse it to develop different
indexes for different applications. A framework is a
software infrastructure that may be tailored for build-
ing domain-specific applications, typically resulting
in increased productivity and faster time-to-market.
Therefore, an index framework should largely reduce
the cost of providing a new index.

The Generalized Index Search Tree (GiST) (Heller-
stein et al., 1995) is an existing framework of a gener-
alized index system. It can be adapted to different key
types and access methods. However, GiST has tried
to satisfy all the possible needs of the future members
of a family of applications, so it leads to code that
is larger and less user-friendly. In addition, the source
code itself is largely influenced by the C programming
language and has poor object-oriented style.

As the framework development methodologies im-

prove, these problems are being recognized and ad-
dressed. The Know-It-All Framework (Butler et al.,
2002) is an object-oriented framework for database
management systems. The Tree Index Framework is
a subproject. It is being developed in C++ to con-
form to the style of the Standard Template Library
(STL) collections and iterators. The index subframe-
work covers tree-based indexes which include multi-
dimensional trees and similarity-based retrieval. It
also covers sequential queries, exact match queries,
range queries, approximate queries, and similarity
queries.

The B+-tree Index is designed to be a container that
provides an iterator to its contents. The only way to
interact with the container is through its iterator. Allo-
cators are responsible for the memory management is-
sues, and the Proxy mechanism is used to load a page
from disk on demand and maintain the reference to
the loaded page.

The index subframework (Nie, 2003) covers tree-
based indexes such as B+-tree, R-tree, X-tree, SS-tree
and their variants (Gaede and Günther, 1998). In the
future we plan to include hash indexes and inverted
file indexes as well. We report only the inital work on
B+-trees (Zhou, 2003).

The main sections of the paper cover the design of
the B+-tree, the implementation of the B+-tree, and
the testing of the B+-tree and its performance. Be-
fore those main sections we present the background
material, and after the main sections we conclude.
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2 BACKGROUND

2.1 B+-tree

A database management system (Garcia-Molina
et al., 2000) is a set of programs that allow users to
define the type of data they want to store and manages
that data by providing efficient retrieval. Efficient re-
trieval is done by using appropriate data structures
such as B-tree, B+-tree or hash files as indexes within
the database. An index is “a data structure that allows
for random access to arbitrary data within a field, or
a set of fields. In particular, an index lets us find a
record without having to look at more than a small
fraction of all possible records.” (Garcia-Molina et al.,
2000) From this definition, we can see that an index
(Bayer and McCreight, 1972) consists of “index ele-
ments which are pairs (x, a) of fixed size physically
adjacent data items, namely a key x and some asso-
ciated information a. The key x identifies a unique
element in the index, and the associated information
is typically a pointer to a record or a collection of
records in a random access file.” All indexes are based
on the same basic concept — Key and Reference to
Data.

The B-tree and its variant B+-tree are efficient data
structures that are widely used as tree-based multi-
level indexes in database systems. They had already
become so widely used (Comer, 1979) that “the B-
tree is, de facto, the standard organization for indexes
in a database system”. However, B+-trees can support
true indexed sequential access as virtual trees, and
possibly compress separators and potentially produce
an even shallower tree than B-trees (Folk and Zoel-
lick, 1992). A B-tree (Bayer and McCreight, 1972) is
a multi-way search tree designed to solve how to ac-
cess and maintain efficiently an index that is too large
to hold in memory, so the index itself must be exter-
nal and is organized in pages that are blocks of infor-
mation transferred between main memory and backup
storage like hard disks. The power of B-trees lies in
the following significant advantages:

1. Storage utilization is guaranteed to be at least 50%
and should be considerably better in the average
(Bayer and McCreight, 1972).

2. The balance is maintained dynamically at a rela-
tively low cost. No overly long branches exist, and
random insertions and deletions are accommodated
to maintain balance (Folk and Zoellick, 1992).

The B+-tree retains the search and insertion effi-
ciencies of the B-tree but increases the efficiency of
searching the next record in the tree from O(log N) to
O(1).

The B+-tree supports equality queries and range
queries efficiently. Range queries use the forward

or backward pointers in the leaf nodes to get all the
records in the requested range.

2.2 The STL Style

The Standard Template Library (STL) (Stepanov and
Lee, 1995) is a template-based C++ library of generic
data structures and algorithms that work together in
an efficient and flexible fashion. “The Standard Tem-
plate Library provides a set of well-structured generic
C++ components that work together in a seamless
way. Special care has been taken to ensure that all the
template algorithms work not only on the data struc-
ture in the library, but also on built-in C++ data struc-
tures.”

There are six components in the STL organization.
Three components, in particular, can be considered
the core components of the library: template-based
container classes, iterators and generic algorithms
(template functions). The remaining three compo-
nents of the STL are also fundamental to the library
and contribute to its flexibility and portability: alloca-
tors, adapters and functors (function objects).

We adopt the STL style to design and implement
B+-tree index because the STL supports good pro-
gramming practices and addresses several problems
with previous C++ container libraries in a new and
innovative way. There are a number of advantages to
using the STL:
1. “Standard” and “template”: The STL is made
up of “standard components”. Each of them has a
clear standard interface and a well-defined function-
ality. This makes all the components easy to under-
stand and to reuse. Also new components may be
added with the same look as standard ones. Program-
ming with “templates” is a compiler-supported mech-
anism to take generic data structures, such as arrays
and lists, and generic algorithms, such as sort and bi-
nary search, and make them independent of the type
of data being manipulated.
2. Reuse: The STL supports the generic programming
paradigm, whose goal is to design algorithms so they
are fundamentally independent from the types they
act upon. The STL provides reusable components
to achieve code reuse based on templates, rather than
class inheritance. A large number of components al-
ready exist with a complete implementation on hand.
This dramatically reduces the time needed for the im-
plementation for many large systems where a great
percentage of the code is simply imported from the
STL.
3. Smaller source codes: The STL is easy-to-learn
because the library is quite small owing to the high
degree of generality.
4. Flexibility: The use of generic algorithms allows
algorithms to be applied to many different structures.
Furthermore, the STL’s generic algorithms also work
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on native C++ data structures such as strings and ar-
rays. The STL framework has a flexible design by
adopting a complete component replacement policy.
No component is made mandatory to the design. In
other words all the components that make up the sys-
tem are replaceable.
5. Efficiency: The STL is efficient because “Much ef-
fort has been spent to verify that every template com-
ponent in the library has a generic implementation
that performs within a few percentage points of the
efficiency of the corresponding hand coded routine”
as described by Alexander Stepanov and Meng Lee in
the STL specification. STL containers are very close
to the efficiency of hand-coded, type-specific contain-
ers. The STL has been already written, debugged, and
tested.

2.3 Design Patterns

“Design patterns are descriptions of communicating
objects and classes that are customized to solve a gen-
eral design problem in a particular context” (Gamma
et al., 1994). The purpose of design patterns is to
reuse solutions and establish common terminology.
Patterns are an attempt to describe successful solu-
tions to common software problems by experts in
software architecture and design.

We introduce the design patterns in our design of
the B+-tree index.
1. Casting-method: The intent of the Casting-method
pattern (Meyers, 1992) is to dynamically and quickly
obtain a type-safe reference to a subclass in an inher-
itance hierarchy. The Casting method pattern uses in-
heritance to allow subclasses to return references to
themselves. This pattern is applicable when there is
a need to obtain a downcasted class reference from
a base class and when real-time constraints require a
fast and safe solution.
2. Composite: The intent of the composite pat-
tern (Gamma et al., 1994) is to compose objects into
tree structures to represent whole-part hierarchies in a
manner that lets clients treat atomic objects and com-
positions uniformly. As a consequence this simplifies
the Client and makes changes or the additions to the
component very simple.
3. Proxy: The intent of the Proxy design pattern
(Gamma et al., 1994) is to provide a surrogate or
placeholder to control access to an object. Proxies
provide a level of indirection to specific properties of
objects, so they can restrict, enhance or alter these
properties. Proxy is applicable whenever there is a
need for a versatile or sophisticated reference to an
object.

Smart pointers (Alexandrescu, 2001) are objects
that look and feel like pointers, but are smarter. It
is an application of the Proxy design pattern. To look
and feel like pointers, smart pointers need to have the

same interface that pointers do: they need to support
pointer operations like dereferencing (operator *) and
indirection (operator ->). To be smarter than regular
pointers, smart pointers need to do things that regular
pointers do not. Probably the most common bugs in
C++ (and C) are related to pointers and memory man-
agement: dangling pointers, memory leaks, allocation
failures, locking and others.
4. Singleton: The intent of the Singleton design pat-
tern (Gamma et al., 1994) is to ensure a class has only
one instance and provide a global point of access. The
Singleton class hides the operation that creates the in-
stance behind a static member function. This mem-
ber function, traditionally called Instance(), returns a
pointer to the sole instance. Clients access the sin-
gleton by calling the static instance function to get a
reference to the single instance and then using it to
call other methods

3 DESIGN

The B+-tree index is designed to be an associative
container like multimap in the C++ STL. The index
container will be composed of pairs (Key, DataRef),
where the Key is the access key type and DataRef is
a reference to the true location of data. Both Key and
DataRef are passed to the index as template param-
eters. A B+-tree index index pages and leaf pages,
but they are invisible for users. What users operate on
are not pages but pairs. The index and leaf page are
also containers on a smaller scale. The elements of a
leaf page container are pairs (Key, DataRef). The ele-
ments of an index page are pairs of the form (separa-
tor, child-pointer) where a child-pointer is the address
of a lower page and a separator provides information
about the boundaries between the two pages in the se-
quence set of a B+-tree, so child-pointers have one
more than separators. A separator may be a prefix
from page key or an exact copy of the page key of the
lower page that the child pointer points to. In our de-
sign, the page key of a leaf page is the first key but
the page key of an index page is the page key of the
leftmost leaf page if the child pointer is treated as the
root of a subtree.

While a B+-tree index typically resides on hard
disk, a page is small enough to fit in memory. When-
ever a page is needed, it is retrieved from the hard
disk into memory through a proxy. At this point the
page can perform its tasks of searching for a key in
its contents, accepting new entries, and deleting some
existing ones.

The major classes are BplusTree, which represents
the B+-tree as a whole, the abstract class Page and
its concrete subclasses IndexPage and LeafPage. Fig-
ure 1 shows the main interface of B+-tree index. It
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is important for the BplusTree, Page, IndexPage, and
LeafPage containers to conform to a set of abstract
concepts provided by the STL.

Figure 1: STL Interfaces for the B+-Tree Index.

4 IMPLEMENTATION

The design of the major classes is shown in Fig-
ure 2. We investigated several designs in order to
cleanly and uniformly treat all pages the same, in-
cluding the issue of loading pages from disk. This
design here combines the composite pattern with the
casting-method pattern to resolve the issues.

4.1 Page Class

Page is an abstract class which defines an interface for
its subclasses: IndexPage and LeafPage. This base
class uses casting methods to obtain a type-safe refer-
ence of an object in the class. As a result, BplusTree
only holds a pointer to a Page but it can get references
to the index page and leaf page through this pointer,
and then can invoke the class-specific functions such
as begin(), end() and insert() through these references.

IndexPage and LeafPage are designed to be tem-
plate container classes in the spirit of the STL, so they
must conform to all STL interface characteristics. All
containers provide their own public functions (built-
in algorithms like find() ). They also provide public
iterators and type definitions to allow for interaction
with external STL algorithms like find if() or any new
user defined algorithm.

4.2 LeafPage Class

The LeafPage class is an associative container that
supports elements with duplicate keys. Many STL
containers can be used, but we use multimap because
it has efficient retrieval, and bidirectional iterators.

4.3 IndexPage Class

An index page is also designed to be an associative
container. The IndexPage container is invisible to
applications. It is created and managed by the tree.
There is a mismatch in number between the separa-
tors (keys) and the child pointers that make up the
pairs for an IndexPage: there is one more child pointer
than separator. This complicates our view of an In-
dexPage as a container of pairs. In our implemen-
tation, two vectors are needed: one for keys (called
the key container), and the other for child pointers
(called the child pointer container). There are two
kinds of iterators provided by two vectors respectively
but the index page container uses the iterator of the
child pointer container as its external iterator. The it-
erator of the key container is only used as an internal
iterator.

Figure 2: Main Classes of B+-Tree Index.

4.4 B+-Tree

The implementation of the B+-tree index container is
based on Leaf Page and Index Page containers. The
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B+-tree index is initialized from an empty LeafPage
container. However, the index will dynamically grow
or shrink with insertions or deletions. The B+-tree
index container is designed and implemented to be
an associative container, so it supports equality and
range-searches efficiently.

The B+-tree index container only holds a pointer to
a root page. In the operations of B+-tree index, the
required pages are loaded on demand through a proxy
mechanism.

4.4.1 Iterator

An iterator is the only way to access to elements
within B+-tree index containers. The Iterator is a
nested class defined within a B+-tree index container
class and is a friend to this container. A B+-tree index
container is a doublely-linked list of leaf pages, but
the elements that B+-tree iterators are iterating over
are pairs of key and data reference. Therefore, a B+-
tree iterator should point to a pair: a leaf page pointer
to the page where the pair is stored, and the leaf page
iterator that points to this pair.

4.4.2 Proxy

The B+-tree index uses a Proxy mechanism to man-
age access to the storage of the index. Only the root
of a B+-tree is loaded initially, and resides in memory
until the B+-tree is destroyed. Each access to a non-
root page checks if the page is in memory. If yes, the
Proxy returns a smart pointer to the tree. Otherwise,
the Proxy will check if the Cache has a reference to
the page. If the page reference is in the Cache, the
tree algorithm can quickly get a smart pointer to the
page. If not, the Proxy needs to read the page object
from the storage.

4.4.3 Cache

The global cache management consists of two pro-
cessing components (Huang and Stankovic, 1990):
allocation and replacement. Allocation distributes
global buffer space among concurrent transaction and
replacement is responsible for accessing of the global
buffer and page replacement operations. The life span
of a page, except the root, in memory depends on the
replacement strategy of the Cache. When a page is
removed from the cache, it will be destroyed in the
memory heap. In our B+-tree index, we use a Least
Recently Used (LRU) replacement strategy.

4.4.4 Storage and Serialization

The Storage class is mainly responsible for manag-
ing and controlling accesses to the index files on disk.
In the B+-tree index, a block is the basic unit for I/O

operation. When a new page object is needed, Stor-
age allocates a block for it on the physical storage.
When a page object is deleted from the files, Storage
garbage-collects the block used by the page and real-
locates it.

Serialization is used to read or write a page to or
from the index files. The basic idea of serialization is
that a page should be able to write its current state to
persistent storage. Later, the page object can be re-
created by reading, or deserializing, the object’s state
from the disk.

5 TESTING

5.1 Correctness Testing

Correctness testing of the B+-tree index focuses on
testing the insert, delete and find operations. We use
the Berkeley DB (Olson et al., 1999) test suite which
is a complete test suite for relational databases, not
just indexes. Besides the existing test cases for B-tree
index testing in this test suite, we also create some
special test cases for illegal inputs, large inputs, and
values smaller or larger than the specified range.

5.2 Performance Testing

Performance is always a great concern for database
indexes. The goal of performance testing can be
performance bottleneck identification for code tun-
ing and optimization, or for performance compari-
son and evaluation. We did both. We used a bench-
mark dataset from GiST, as well as randomly gener-
ated datasets.

Our platform for performance testing was a Sun-
Fire 280R with two UltraSparc-III+ CPUs running at
900MHz, 4GB memory, using the Solaris 9 operat-
ing system and the GNU g++ 3.2 compiler. The files
were on a Network Appliances file server accessed via
a Gigabit Ethernet.

The first dataset was a dataset provided with GiST.
The dataset contains 10,000 random integers as keys.
For the test, we set the size of a page to be 8KB, which
is is the size of a block on the test platform; and we
set the buffer (cache) to hold at most 16 pages. Then
we recompiled GiST v1.0 and our KIA B+-tree index.
For this set up, a page will contain at least 500 keys
and at most 1000 keys if the Data Reference is treated
as an integer. The B+ tree should have at least 21
pages in two levels. The test performed each of the
following three tasks and timed them for ten separate
runs, reporting the average of the ten repetitions.

1. Insert each (key, pointer) pair in the dataset;

2. Find the first position with a key ≥ 20000; and
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Table 1: Performance Comparison (Time in µsecs)
KIA Gist Ratio

B+-tree B+-tree KIA:Gist
Time Time

10,000 keys, GiST dataset
Insertion 260,385.9 626,468.4 0.4
Search 25.3 64.5 0.4
Deletion 734.4 2,389.1 0.3
100,000 keys, random dataset
Insertion 2,250,000 223,362,386 0.1
Search 35 4,095 0.008
Deletion 2,270,000 297,000 7

3. Delete all the elements where the key < 20000.

The second dataset contained 100,000 keys which
were random integers in the range 0..32767. We set
the buffer to hold 128 pages, with the page size still
set at 8KB.

Table 1 shows the test results that are the average
time (microseconds) of 10 tests under the same condi-
tions. Except for the anomaly of the deletion time for
the second dataset (which we still do not fully under-
stand), our implementation is significantly more effi-
cient than that of GiST. We did attempt a comparison
using one million keys: our B+-tree worked fine, but
we could not repeat the test using the GiST imple-
mentation.

6 CONCLUSION

In this paper we describe how to build a B+-tree index
using C++ template mechanisms, design patterns, and
the STL style in order to achieve flexibility and effi-
ciency. The index can easily handle arbitrary keys and
data references. The index is extremely efficient.

The adoption of the STL style promotes code reuse,
increases readability and user friendliness, and re-
duces time and cost overheads incurred during the ap-
plication development process. Design patterns sim-
plify the design complexity by separating design con-
cerns at the micro-architecture level. The combina-
tion of the STL style and design patterns makes our
B+ tree index general and reusable. Several design
patterns such as Composite, Casting method, Proxy,
and Singleton were used because they provided a
model of how to solve our design issues, many of
which dealt with introducing extensibility into the de-
sign in order to make it more reusable.
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