
OO SYSTEMS DEVELOPMENT BARRIERS FOR STRUCTURAL
DEVELOPERS

Making the most of your systems engineering methodology

Elsabé Cloete, Aurona Gerber
School of Computing, University of South Africa, Pretoria, South Africa

Keywords: Systems Engineering Methodologies, System Development Paradigms, Object Oriented Development,
Structural Development

Abstract: Paradigm contamination occurs where methods from different system development (SD) paradigms are
integrated or combined. We investigate the OO and structural SD approaches and concern ourselves with
the question of how paradigm contamination can be avoided, especially when developers were initially
exposed to structural programming techniques and are now expected to apply an OO approach. By
comparing the techniques associated with specific SD approaches, an outline is given of the particular
differences and commonalities that regularly cause paradigm contamination. Guidelines for avoiding
contamination traps are then provided. This is significant for practitioners enabling them to be aware of the
possible contamination pitfalls as well as how to avoid them, and as a result to reap the intended benefits of
the chosen SD method.

1 INTRODUCTION

Since the formal introduction of object-oriented
systems development (OOSD) it has been rapidly
adopted and chosen by industry. However, many IT
educators, students and practitioners were
fundamentally trained in the structured1 SD
paradigm.

Owing to the many advantages (Bahrami 1999,
Brown 2002, Coad & Yourdon, 1990) OOSD is
claimed to have, development teams are increasingly
required to follow an OOSD approach. This has
created a demand for the teaching of OOSD,
implying that students are likely to be introduced to
both paradigms during training. Sadly, these
students frequently do not master any of the
approaches completely since they are not yet
experienced enough to make a successful switch
between the two schools of thought, and the result is
paradigm contamination2.

1 Also called functional systems development
2 Note that we use contamination and not confusion.

Contamination implies an approach that is not pure,

Paradigm contamination occurs when methods
from different methodologies are mixed or
combined and as a result some of the unique
functionalities and benefits of a specific approach
are lost. Many people have attempted to reconcile
structural systems development (SSD) and OOSD
processes (Alabiso 1988, Brown & Dobbs 1989,
Gray 1988, Khalsa 1989) but none of these attempts
produce clean results that maintain the benefits of
either approach because the underlying philosophies
of the approaches differ so substantially. According
to Berard (2003) experience has shown that the
integration of OO thinking into structural
methodologies is a mistake as it results in various
spin-off problems. (We recognize the position of,
and sometimes the necessity for hybrid systems (for
example, see (Ambler, Keller 2002)). True hybrid
systems are not the result of contaminated efforts,
but were planned that way to reap very specific
benefits that could be offered by the different
approaches at the expense of some of the other
benefits.

which is what this paper is dealing with. Confusion has
a narrower definition.

42
Cloete E. and Gerber A. (2004).
OO SYSTEMS DEVELOPMENT BARRIERS FOR STRUCTURAL DEVELOPERS - Making the most of your systems engineering methodology.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 42-47
DOI: 10.5220/0002612700420047
Copyright c© SciTePress

In industry many individuals have been through
OOSD courses only to find that the lack of
experience plunges them into paradigm
contamination. It seems that (re)training in OO
techniques does not necessarily produce the essential
paradigm shift, but a clear outline of the peculiarities
and possible contamination pitfalls is required to
reap the intended benefits of the SD approaches.
Literature addressing these peculiarities and
contamination pitfalls to assist novice OO
developers is limited. Furthermore, many authors
actually encourage the integration methods from the
two paradigms (Post 2001, Wesson 1997) which
leads to confusion and paradigm contamination.

The question that we concern ourselves with is
how paradigm contamination can be avoided. We
address this question by comparing the specific
approaches and techniques associated with the
aforementioned SD approaches to outline the
particularities that commonly cause their integration
and combination. We have also developed
guidelines to identify areas where contamination
commonly occurs in order to avoid contamination
traps. The benefit of our work is found in the
strategies provided to detect and prevent paradigm
contamination and as a result be able to retain the
advantages of the chosen SD approach. This is
significant to practitioners as it enables them to be
aware of the possible contamination pitfalls as well
as how to avoid them. As a result it facilitates an SD
environment that can be optimised to improve the
quality of the end product. In the paper the
discussion is focused around structural
contamination that occurs in the development of OO
systems.

Section 2 uses the theoretical essentials of the
two SD paradigms to highlight the differences
between them. These differences are used in Section
3 to compile the abovementioned guidelines, whilst
conclusions are drawn in Section 4.

2 PARADIGM CONTRASTS

The term paradigm originated from Greek and was
originally only used scientifically. Today it is used
to indicate a perception, approach, theory or frame
of reference. Covey (1989) describes paradigms as
mental maps through which we interpret the world
around us. Within the software domain we use
paradigms to create mental models of systems, and
these paradigms influence the approach and
techniques used to analyse and develop systems.
Covey (1989) describes a paradigm shift as the
“Aha!” experience when someone finally ‘sees’
something in another way.

The notion of a paradigm as a frame of reference
is applicable within the systems development
domain where the structured paradigm in essence
views a system as a collection of processes operating
on data and this approach uses functional
decomposition and entity models to identify the
central functions and processes required in the
system. The object-oriented paradigm in contrast
views systems as a collection of interacting objects
and models interactions between objects to achieve
the required systems functionality. We do not have
central control in OO as in the structured paradigm.

Many comparisons and discussions of the two
approaches fail to take notice of the paradigm
difference.

In their paper, Shah et al. (1997) analyse
potential pitfalls of OOSD from different viewpoints
including the conceptual and political ones, analysis
and design, environment, language and tools,
implementation, class and object, and re-use.
Although a useful discussion, it does not focus on
in-depth analysis and design issues but rather on
implementation issues. It also seems to favour the
mature software engineering team as the target
audience. Our discussion concentrates on analysis
and design issues that commonly cause the
integration and contamination of the two SD
approaches. Our target audience includes (1) the
novice developer or student who might be expected
to work in both structural and OO environments, (2)
the novice developer or student who has been
trained in the structural paradigm and is expected to
be trained for, or to work in, the OO environment,
and (3) the instructor responsible for teaching OOSD
principles to structurally exposed students

We use five categories to broadly classify the
issues that form the basis of our discussion. These
include the General Approach, which embodies all
other categories; Analysis, dealing with
contamination issues at the outset of an SD project;
Modelling, which explains how models and their
uses are easily misapplied; Coding, dealing with
implementation contamination issues and, finally,
Consistency, which discusses consistency issues
across other categories.

2.1 General Approach

An important difference between the two SD
approaches is the inclusion of an iterative and
incremental development style (OOSD) versus the
conclusion of phases (SSD). Although the difference
in approach is in essence due to the historical
development of software development
methodologies, the object-oriented paradigm
includes the notion that the requirements of a system

OO SYSTEMS DEVELOPMENT BARRIERS FOR STRUCTURAL DEVELOPERS

43

changes throughout development and it therefore
requires an iterative and incremental method. The
iterative style prescribes the re-analysis/ re-design of
a portion of the system, recognizing the possibility
that completed parts might be flawed. Incremental
development implies a piecemeal development of
the whole application.

 The structural paradigm requires the conclusion
of each step within each phase before moving to the
next step or phase. For example, the requirements-
gathering phase is seldom revisited because of the
basic assumption that the first attempt was correct
and complete. Accommodating late requirement
changes is complex due to the complexity of
accurately establishing the affected parts. Some
variations of the traditional SDLC such as the spiral
SD model attempted to address this matter, but these
approaches still require the completion of a phase
before the initiation of the subsequent phase.

2.2 Analysis

A fundamental paradigm shift required in the move
to OOSD expands conceptual modelling at the
beginning of the analysis process. The SSD
approach analyses the problem in terms of the
solution domain when it segregates the data and
processes/functions. A conceptual model in SSD is
therefore often includes entity models and
information flow diagrams. OOSD, in contrast,
analyses the problem in terms of the problem
domain when it first models problem domain objects
and their interactions before translating the analysed
information to the solution domain.

A second analysis area where a paradigm shift is
required is on the level of abstraction. Closely
related to conceptual modelling, the level of
abstraction refers to the tools that are used to
perform analysis. OOSD approaches use use-cases,
interaction diagrams, activity diagrams and the
resulting conceptual class diagrams to analyse and
fully understand the problem domain. Structural
approaches, on the other hand, use solution-based
diagrams from the commencement of the analysis.
Paradigm-contaminated analysts often start their
analysis with use cases and then follow this up by
using class models and entity models
interchangeably. In this way the analysis of the
problem domain is fused with an analysis of the
solution domain. Paradigm-contaminated developers
often do not realize that entity models are already at
the design level of system development, while use-
cases, activity and interaction diagrams are at the
analysis level, which makes the application of entity
models to OO analysis inappropriate in problem
domain-based analysis.

2.3 Modelling

We distinguish between two modelling issues,
namely the systems model and diagrammatic
representation. As mentioned above, the
interchangeable use of the entity models and
specifically ER-diagrams, and class diagrams points
to paradigm contamination. Although the different
diagrams have elements of commonality, their
semantics differ completely. Entity identification is
commonly considered as central to design
specification (Bulman 1998). But, as Sha et al.
(2001) put it: "OOSD does not simply imply the
definition of classes, objects and methods, in the
same way that structural programming does not
simply imply the removal of GOTO statements from
spaghetti programs”. Bulman (1998) correctly
summarizes the OO design phase as the
establishment of the system architecture (class
diagrams) as well as the definitions of their
interactions and interrelationships. However, this is
not what the ER-diagram represents.

Structurally contaminated developers are
frequently impatient to get to the solution domain.
Instead of focusing on objects, they concentrate on
data entities when analysing requirements. They
often incorrectly assume that objects are the same as
data entities – often because some OOSD
methodologies suggest noun identification as a first
level of object identification (Booch 1982, 1983a,
1983b).

The second modelling contamination aspect is
found in diagrammatic representation where it is
often accepted that similar diagrammatic
representations have identical semantics. For
example, both paradigms use rectangles, but in the
structured paradigm, a rectangle represents entities
(data without functionality) and in the OO paradigm,
classes (data and functionality). In order to model
the functionality of the system, an ER-diagram
needs an (additional) accompanying data-flow
diagram.

Another example of confusion in diagrammatic
representation is found in the link3 between two
objects/entities as well as the multiplicity or
cardinality in such a link. In an ER-diagram, a link
represents a time-independent relationship between
entities, while it represents a time-dependent
association in a class diagram where a message is
typically passed from one object to another,
indicating behaviour or interaction. Cardinality
models a general truth between entities, while

3 adjoining lines between rectangles

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

44

multiplicity models behaviour at a specific point in
time. For example, when modelling the marriage
relationship between a man and a woman for system,
a structural approach would depict the cardinality
between the two entities as many-to-many to capture
the possibility of multiple partners during a lifetime.
In the OOSD approach the multiplicity between the
same two objects is one-to-one, indicating the
marriage of one man to one woman at any particular
time. The history of the man's (or woman's) previous
marriages could be captured in a different persistent
object depicting marital history.

2.4 Consistency Level

Phases in the life cycle of an OO methodology tend
to be much more consistent with each other (Berard
2003), than those that follow a structured approach.
Concepts are reused and tend to retain their meaning
throughout a life cycle instead of new concepts
being introduced for each phase.

Structured approaches, on the other hand,
commonly use different techniques for each life
cycle phase. In these approaches, different styles of
modelling in the different life cycle phases require
different styles of thinking, while in the OO
paradigm the same representation, notation and style
of thinking from inception to final management are
used.

2.5 Coding Level

Some developers claim that they do not need any
thorough SD, because owing to their experience,
they can code the problem into the required system
straight away. Although this is commonly true for
small scale systems, this boldness is very often a
giveaway of paradigm contamination as structural
programming can be done this way through
functional decomposition, but it is very difficult to
do an OO implementation where every object
executes a small part of the overall system
functionality without modelling. In an OO system a
responsibility is shared by different objects, while in
structured systems a responsibility is captured in a
single system process.

3 AVOIDING PARADIGM
CONTAMINATION

Paradigm contamination can be avoided through
awareness. According to Covey (1989) “The more
aware we are of our basic paradigms, maps or
assumptions, and the extent to which we have been

influenced by our experience, the more we can take
responsibility for those paradigms, examine them,
test them against reality, listen to others and be open
to their perceptions, thereby getting a larger picture
and a far more objective view.”

In the next section we develop a set of guidelines
to create awareness of paradigm contamination. We
will use the comparison categories used in the
previous sections to describe guidelines for the
detection and possible avoidance of paradigm
contamination pitfalls.

3.1 General approach contamination

OO methodologies generally subscribe to iterative
and incremental SD, while structural methodologies
advocate models such as the waterfall model where
each phase forms a conclusive unit. The following
are questions that can be asked to establish whether
structural contamination occurs:

– Does the developer insist on having all

requirements on all facets of the problem before
moving on?

– Does the developer insist on completing all
facets of the problem during each development
phase?

– Does the developer insist on having all design
models before being able to commence with
implementation?

An affirmative answer to any of the above

questions points to structural contamination. At this
point the rationale behind incremental design and
development to deal with incomplete or inconsistent
requirements and to partition the development into
several increments can be explained to the developer
(Rowlet 2001). In this way developers can avoid
endangering critical code, increments can be added
as the development process proceeds, and
productivity might be improved by working with
more manageable pieces.

3.2 Analysis contamination

Structural contamination on the analysis level is not
always easy to spot, since it is necessary to
understand the thought processes of the student.
The following guiding questions might reveal
analysis contamination:
– Is the problem expressed in terms of data entities

or database fields?
– Is the problem partitioned into functional units to

capture a possible solution (functional
decomposition)?

OO SYSTEMS DEVELOPMENT BARRIERS FOR STRUCTURAL DEVELOPERS

45

– Is a type of flow diagram drawn to capture a
possible solution?

– Is the analysis process going ahead with class
diagrams that are developed from the
identification of data entities?

Structural developers often claim that their

experience leads them to understand the
requirements to such an extent that they see the
solution immediately and do not have to analyse the
problem in the OO way. This type of thinking is a
common source of paradigm contamination that can
be rectified through examples and practice.

3.3 Modelling contamination

The issues raised in 3.2 are also relevant to
establishing modelling contamination because
structurally contaminated developers commonly
begin with identification of data entities or ER
diagrams. In doing so, they fail to incorporate the
behaviour of the system, which would have been
revealed if a detailed analysis had been performed.
Pertinent questions include the following:
– Is a class or ER diagram used in the analysis

process?
– Does the multiplicity reveal general truths or

does it model a truth at a specific time?
– Is elaboration through data flow diagrams

required to interpret the behaviour of class
objects?

– Does the link between two class objects imply a
relationship rather than an interaction?
Paradigm contamination could be rectified by

pointing out the specific differences as well as the
impact of each on the different paradigms.

3.4 Consistency contamination

Structurally contaminated developers tend to
introduce new concepts between the different life
cycle phases because different structural models
work on different objects. Two simple questions to
establish structural contamination at this level are as
follows:
– Do new objects appear in the different models

that portray the problem or the solution?
– Is there a clear translation from one phase into

the next?
An affirmative answer to the first question, and a

negative answer to the second one points to a
possible contamination struggle. A way to overcome
this is to introduce the use of UML, which retains
semantics between the different phases and produces
different views on the same objects.

3.5 Coding contamination

Coding contamination is always a result of
contamination at earlier levels. An affirmative
answer to any of the following questions might
indicate structural coding contamination:
– Do some objects only contain data or are there

elements that are not encapsulated within any
object?

– Are any of the following used: exceptions,
parameterised classes, meta-classes and
concurrency?

– Inheritance: Does there seem to be confusion
between interface inheritance and
implementation inheritance? Does the use of
inheritance violate encapsulation? Are multiple
inheritances used in any way?

– Is there confusion between is-a, has-a, and is-
implemented-using relationships?
If structural contamination occurs in this

category it might be better to take the developer
back to the analysis and design stages of the project,
which prescribes the implementation.

4 CONCLUSIONS

There is a demand for the application of different
paradigms in software development projects, but the
OO-approach is nowadays often favoured or
preferred by industry. However, many developers
have been trained in structural or even both
paradigms, which often lead to paradigm
contamination when they are working in the OO
paradigm. It would assist developers and instructors
if they were aware of the implications of the
different paradigms and the impact of paradigm
contamination.

In this paper we discussed the problem of
structural paradigm contamination in the OOSD and
outlined categories where structural contamination
usually occurs. We concluded each category by
providing guidelines for detecting and avoiding
contamination. We foresee (and have experienced)
that the most difficult problem in eradicating
structural paradigm contamination is to address the
human side of it, encouraging developers and
instructors, students and developers to do a
paradigm shift, and perceive contamination pitfalls
and the benefits of applying a pure development
approach.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

46

REFERENCES

Alabiso B. Transformation of Data Flow Analysis Models
to Object -Oriented Design. 1998. In: OOPSLA '88.
Special Issue of SIGPLAN Notices, Vol. 23 (11). pp.
335 - 353.

Ambler S.W. 2000. Mapping objects to relational
databases. An AmbySoft Inc. White Paper. Retrieved
11 February 2002 from
http://www.AmbySoft.com/mappingObjects.pdf.

Baharami A. 1999. Object oriented systems development
using the unified modelling language. Irwin McGraw-
Hill.

Berard E.V. Object Oriented Design. Retrieved February
2003 from http://www.toa.com/pub/ood_article.txt.

Booch G. 1982. Object Oriented Design. Ada Letters, Vol.
I, No. 3, pp. 64 - 76.

Booch G. 1983a. Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, California, 1983.

Booch G. Object Oriented Design. 1983b IEEE Tutorial
on Software Design Techniques, 4th Ed., P. Freeman
and A.I. Wasserman, Editors, IEEE Computer Society
Press, pp. 420 - 436.

Brown D.W. 2002. An Introduction to Object-Oriented
Analysis - objects and UML in plain English. 2nd Ed.
John Wiley & Sons, Inc. New York. pp 668.

Brown R.J. AND Dobbs V. 1989. A Method for
Translating Functional Requirements for Object-
Oriented Design. In The Seventh Annual National
Conference on Ada Technology. pp. 589- 599.

Bulman D. 1998. Objects Don't replace design. Computer
Language. Vol 6. No. 8. pp 151-152

Coad P. AND Yourdon E. 1990. Object-Oriented
Analysis. Computing Series. Yourdon Press,
Englewood Cliffs, NJ.

Covey S.R. 1989. The 7 Habits of Highly Effective
People. Simon & Schuster UK Ltd.

Gray, L. 1988. Transitioning from Structured Analysis to
Object-Oriented Design. In The Fifth Washington Ada
Symposium, Association for Computing Machinery,
New York, New York, pp. 151 - 162.

Khalsa K. 1989. Using Object Modelling to Transform
Structured Analysis Into Object-Oriented Design, In
The Sixth Washington Ada Symposium. pp. 201- 212.

Keller W. Mapping objects to tables, a pattern language.
Retrieved 11 February 2002 available from
http://www.objectarchitects.de/ObjectArchitects/
Papers/Published/ZippedPapers/mappings04.pdf.

Post G. 2001. Database Management Systems: Designing
and Building Business Applications, 2nd edition.
McGraw-Hill.

Rowlet T. 2001. The Object-Oriented Development
Process. Upper Saddle River, NJ, USA. Prentice Hall.
pp 420.

Sha V., Sivitanides M. & Martin R. 1997.. Pitfalls of
Object Oriented Development. Retrieved January 2003
from http://www.westga.edu/~bquest/1997/object.html

Wesson J.L. 1997. An Investigation into Design
Methodologies for Usability: A Case Study Approach.
Doctoral Thesis, University of Port Elizabeth

OO SYSTEMS DEVELOPMENT BARRIERS FOR STRUCTURAL DEVELOPERS

47

