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Abstract:  This paper investigates the application of partially recurrent artificial neural networks (ANN) in the flow 
estimation for São Francisco River that feeds the hydroelectric power plant of Sobradinho. An Elman neural 
network was used  suitably arranged to receive samples of the flow time series data available for São 
Francisco River shifted by one month. For that, the neural network input had a delay loop that included 
several sets of inputs separated in periods of five years monthly shifted. The considered neural network had 
three hidden layers. There is a feedback between the output and the input of the first hidden layer that 
enables the neural network to present temporal capabilities useful in tracking time variations. The data used 
in the application concern to the measured São Francisco river flow time series from 1931 to 1996, in a total 
of 65 years from what 60 were used for training and 5 for testing. The obtained results indicate that the 
Elman neural network is suitable to estimate the river flow for 5 year periods monthly. The average 
estimation error was less than 0.2 %. 

1 INTRODUCTION 

The Brazilian hydroelectric system presents peculiar 
aspects that make it different from other such 
systems. First, Brazilian rivers flow characteristics 
show a strong seasonality and a high degree of 
uncertainty on the opposite of north hemisphere 
systems in which the hydrologic regimen is ruled 
basically by ice melting. Second, the Brazilian 
system shows an isolating system characteristic 
lacking interconnection with neighbouring 
thermoelectric systems as opposite to typical 
hydroelectric systems. And finally it shows a strong 
hydraulic coupling among its unities. 

Thus, the operation planning of such plants 
depends on a previous knowledge of water volume 
available in the corresponding reservoirs, i.e. it is 
necessary to know the volume of water that will be 
available in advance in order to estimate the 
maximum level of energy to be generated by the 
plant. So it is possible to carry out the energy 
planning having good flow estimates in order to 
optimize the energy processing generation. 

To  that   end,  there are  measuring  units  along  
specific sites on the rivers comprising the 
hydrographical basin that produce discrete flow 
measures making possible the composition of 
history flow series. The estimation of flows 
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comprises the determination, in advance, of the 
values of water volume that will reach the measuring 
units based on the available history series 
(Chatfield,1991). 

The flow estimate is a true challenge used for 
the management of hydrological resources of a 
certain river basin (Moraes, 1995,1996). The 
predictions of flood, sole humidity for agriculture, 
levels of river navigation, the available water 
capability for water distribution, irrigation and 
energy production are possible with river flow 
estimation (Tucci, 2002). The flow estimation can be 
performed for short, medium or long term. (Tucci, 
2002). The short term prediction is used to estimate 
the flow in a basin location within some hours or 
days in advance. The medium term prediction 
involves the flow prediction within one to several 
months in advance and depends strongly on weather 
and ocean conditions that might influence the values 
of future flows. Finally, the long term prediction 
deals with the estimation of the risks of certain 
levels of flows, usually done statistically, in a certain 
site in the river basin.  For instance, the flood risk in 
a certain river section, the chances of dry and wet 
periods, etc (Tucci, 2002). 

Traditionally the electric sector uses the Box-
Jenkins method (Box, 1976), (Hoff, 1983) for 
predicting the river flow that supposes a linear 
relationship among the present and past flow values. 
Linear models usually considered are autoregressive 
(AR), moving average (MA) and the autoregressive 
moving average (ARMA) that might no be suitable 
to deal a data set having non linear and non 
stationary characteristics such as the flow series 
(Chatfield, 1991).  

On the other hand, artificial neural networks 
(ANN) (Fog, 1995), (Lachtermacher, 1995), (Sarle, 
1995) are models comprising a number of non linear 
elements, the neurons, working in parallel and 
organized in layers such as their biological 
counterparts. They can learn certain knowledge by 
experience (Haykin, 1994), (Evans, 1991), (Siqueira, 
2002). The ANNs can be of two types: feedforward 
and recurrent networks. The neural networks with no 
feedback are static i. e. a certain input only produces 
a set of outputs with no memory capability. 
Recurrent neural networks are able to memorize 
temporal information. A typical case is the Elman 
network (Elman, 1990), which is partial recurrent 
and will be used in this paper for estimating the river 
flow. 

The main advantages in using the ANN 
approach compared to the classical methods are: 

  

• ANNs are faster than most current 
statistical techniques; 

• ANNs are self-monitoring, i.e. they learn 
how to perform accurate predictions; 

• ANNs are able to carry out iterative 
predictions; 

• ANNs are able to deal with non stationarity 
and non linearity of the investigated time 
series; 

• ANNs offer both parametric and non 
parametric prediction; 

 
Several researchers have done work in this area. 

Zurada in 1997 (Zurada, 1997) introduced the 
concept of sequential neural networks using an 
Elman network. Aquino (Aquino, 1999) uses ANNs 
in the planning for hydrothermal generated systems 
operation. Millioni (Millioni, 2000) tries to 
circumvent the physical nature process using a 
system that makes use, in a first step, of econometric 
models dealing with multiple regressions to explain 
the flow of a river section from the observation of 
the backward river level. Tucci (Tucci, 2001) shows 
the real time prediction result for the river volume at 
Ernestina reservoir. 

This work has the objective to investigate the 
estimation of the river flow in a 5 year period 
monthly in order to aid the electrical sector involved 
in energetic planning. 

The importance of the flow prediction can be 
better appreciated by the fact of the existence of an 
energy surplus not used, coming from the difference 
between the average generation in all flow history 
(medium and long term) and the firm energy. 

The paper is organized in 5 sections. The first 
introduces the subject reviewing other works done 
earlier. 

Section 2 shows theoretical foundations on 
Elman neural networks. Section 3 describes the 
problem modelling. Section 4 show numerical 
results and section 5 concludes the paper. 

2 BASIC FOUNDATIONS  

Static neural networks such as multiple layer 
perceptrons (MLP) trained with the backpropagation 
algorithm (Cichocki, 1996), are not suitable for 
dynamic mappings (Haykin, 1994). 

As a consequence learning the temporal 
characteristics of a signal containing the history river 
flow can be a difficult task.    

In order to solve the problem, a traditional MLP 
could be used with inputs delayed in time. Figure 1 
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shows that arrangement called temporal network in 
which a MLP network is fed by an input u(t) that is 
successively delayed in time until u(t-k) and has as 
output y(t) = u(t). In that case, the delay operator is 
being applied only at the input but it could be 
applied either in the hidden layers or at the output. 

Another way to solve the problem is to use 
networks with feedback called recurrent neural 
networks. Usually recurrent neural networks can 
incorporate a MLP or part of it. In general such 
networks are suitable for dealing problems with 
temporal characteristics.  

Recurrent neural networks can have one or more 
feedback loops. Those fully recurrent every neuron 
is connected to all others and constitute the more 
general case of ANNs. 

 

 
Figure 1: Temporal network 

 
An elegant way to represent a neural network is 

using a state space model. The notion of state plays 
an important role in the mathematical formulation of 
a dynamical system. The state of a system is 
formally defined as the set of quantities that 
synthesises all the information about the past 
behaviour of the system that is needed to uniquely 
describe its future behaviour, except for the purely 
external effects arising from the applied input or 
excitation. Let the [q x 1] vector x(k) be the state of 
a discrete non linear system. Let the [m x 1] vector 
u(k)  be the applied input to the system and the [p x 
1] vector y(k) its output. In mathematical terms, the 
dynamic behaviour of the system, assumed to be 
noise free, is described by the following pair of non 
linear equations. 

))()(()1( kWkWk ba uxx +=+ ϕ           (1) 

)()( xCk xy =             (2) 

 

where Wa is a [q x q] matrix,  Wb is a [q x m] matrix, 

C is a [p x q] matrix , and qq ℜ→ℜ:ϕ  is a  map 

described by: 
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for some memoryless component-wise nonlinearity 
ϕ: ℜ→ℜ. The spaces  ℜm, ℜq, and ℜp are named the 
input space, state space and output space 
respectively. It can be said that q, that represents the 
dimensionality of the state space is the order of the 
system. 

The recurrent neural network represented by 
equations (1) and (2) is a dynamic system with m 
inputs and p outputs of order q. Equation (1) is the 
process equation and equation (2) the measurement 
equation. Regarding matrices Wa, Wb and C, and 
the non linear function ϕ(.) the following can be 
said.  

Wa contains the synaptic weights of the q 
processing neurons which are connected to the  
feedback nodes in the input layer. Wb contains the 
synaptic weights for each one of the q neurons that 
are connected to the input neurons, and  C defines 
the combination of neurons that will characterize the 
neural network output. The nonlinear function ϕ(.) 
characterizes the activation function of any neuron 
in the neural network. This function is usually 
defined by the hyperbolic tangent  (4).  

 

x

x

e

e
xx 2

2

1
1

)tanh()( −

−

+
−==ϕ                                (4) 

 
An important property of a recurrent neural 

network described by state space equations (1) and 
(2)  is its capability to approximate a wide class of 
non linear dynamic systems.  

Figure 2 shows a recurrent neural network with 
three inputs, three states and one output, i.e. m=3, 
q=3 and p=1. 
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Figure 2: Fully Recurrent Neural Network 

 
Matrices  Wa e Wb are defined by: 
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Matrix C a line vector defined as: 
 

]001[=C                                             (7) 

 
Figure 3 represents a nonlinear autoregressive 

model with exogenous inputs (Haykin, 1994). The 
model has a delay line memory with k unities in the 
input. A unit delay output is also feedback to the 
input. The output will be one time unit advanced 
relatively to the input. 

The current and past input values are denoted by: 
u(t), u(t-1) u(t-2) ... u(t-k+1) and the corresponding 
output values: y(t),  y(t-1) y(t-2) ... y(t-k+1) over 
what a regression is performed modeled by the non 
linear map ℑ as shown in equation (8). 

 
 y(t+1)=ℑ(y(t), …,y(t-k+1),  u(t), …u(t-k+1)) (8)  

 

Figure 3: Recurrent Network Structure 

The Elman network was used in this paper which 
is considered as a partially connected ANN as the 
feedback loops  are placed between the output and 
the input of the first hidden layer.  

The recurrent loop is performed by what is called 
a context unit, usually a delay structure storing the 
outputs of the first hidden layer. So, that sort of 
structure enables a time varying pattern generation, 
which makes it suitable for applications involving 
time series data. Besides the recurrent layer, the 
neural network can have several other layers 
comprising a traditional MLP having one or several 
outputs. 

The chosen training algorithm was the 
backpropagation widely discussed in the literature 
(Haykin, 1994) and (Cichocki, 1996). 

Figure 4 depicts an Elman network showing 
clearly the working mechanism of the feedback 
structure.  

 
 

 

Figure  4: Elman Network 
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3 MODELLING 

In this paper, a model similar to the one shown in 
figure 4, is used for 60 month periods delayed one 
another by one month. 

The available database covers 65 years of the 
São Francisco river flow, month by month. From 
those data, 60 year data is used for the network 
training, leaving for test the remaining 5 year data. 
The training data are arranged in an input matrix  
containing 661 rows, delayed by one month and 60 
columns concerning to a 5 year period. The target 
vector has 60 elements delayed by one month 
relative to the last row of the input matrix. 

Figure 5 shows the network model used in the 
tests. 

The optimum number of neurons in the hidden 
layers is chosen heuristically according to training 
results for optimizing the neural network 
performance  particularly regarding generalization.  

The output layer has only one neuron that will 
produce a vector with 60 elements representing the 
predicted river flow values for five years monthly. 
The backpropagation algorithm was used for 
training the neural network in in order to adjust its 
feedforward weights. The recurrent weights are  
fixed to one as usually done in Elman neural 
networks. 

 

 

Figure 5: Used Neural Network Model 

4 RESULTS 

Several Elman ANNs were tested in order to obtain 
the best generalization characteristics. The best 
architecture resulted in an Elman neural networks 
with three hidden layers (357-186-51) and one 
output layer with one neuron which uses the 
hyperbolic tangent as its activation function. The 
used criterion for error minimization was the 
gradient descent with adaptive learning rate and a 
momentum coefficient to minimize the fluctuations 
in the learning curve. Convergence was achieved 
after 1118 epochs for an error goal of 10-5 and the 
resulting learning curve is shown in figure 6. 

 

Figure 6: Learning Curve 

The weights achieved by training the Elman 
ANN are stored in a file for later use for the monthly 
river flow prediction for a five year period. Figure 7 
shows the original test data comprising the last five 
year flow data reserved for test, (continuous curve) 
and the prediction curve (dotted line curve) obtained 
by the Elman ANN. The resulting prediction average 
error was less than 0.2 % . 
 

 

Figure 7: Prediction Curve  

m3/s 

month 
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Figure 8 shows the prediction error curve where 
it can be seen that the average error is not greater 
than 0.2 %. 

 

 

Figure 8: Percentage Error Curve 

5 CONCLUSIONS 

The results achieved by the use of the proposed 
Elman ANNs for river flow prediction indicate that 
they are quite adequate for the flow estimation task.  

In the investigated application, the average  
prediction error of about 0.2% is much less than that 
obtained by traditional ANNs using data Windows 
(Haykin, 1999) typically in the order of 5%.   
Statistical methods used for flow prediction such as 
Box & Jenkins and its variations (Box and Jenkins, 
1976) yield an average error larger than 10 %. 

For future work, suggestions include the use of 
fully recurrent ANNs and ocean temperature data 
added to the neural network input. Ocean 
temperature is known to have a significant influence 
on the river flow values so that sort of information 
will be certainly useful for the neural network in 
consideration. 
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