
A POLYMORPHIC CONTEXT FRAME
TO SUPPORT SCALABILITY AND EVOLVABILITY

OF INFORMATION SYSTEM DEVELOPMENT PROCESSES

Isabelle Mirbel
I3S Laboratory

Les Algorithmes
Route des Lucioles

BP 121
06903 Sophia Antipolis Cedex

FRANCE

Keywords: Information System, Method Engineering, Fragment, Reuse, Evolution

Abstract: Nowadays, there is an increasing need for flexible approaches, adaptable to different kinds of Information
System Development (ISD). But customization of ISD processes have mainly be thought of for the person in
charge of building processes, i.e. the methodologists, in order to allow him/her to adapt the process to the need
of its company or projects. But there is also a need for customizations dedicated to project team members
(application engineers), to provide them with customized guidelines (or heuristics) which are to be followed
while performing their daily task. The knowledge capitalization framework we propose supports evolvability
and customization of ISD processes. Reuse and customization are handled through process fragments stored
in a dedicated repository. Our purpose is not to propose a new way to built processes, as several approaches
already exist on this topic, but to ease the use of existing ones by making them less rigid and allowing their
adaptation to the need of the company, the project and most of all, the project team member. Therefore,
in addition to a repository of process fragments, we propose a scalable and polymorphic structure allowing
methodologists to define a working space through a context made of criterias. Thanks to this context the
project team members better qualify their ISD problem in order to find a suitable solution. A solution is made
of process fragments organized into a route-map specially built to answer the project team member need and
directly usable by him/her.
The context-frame we focus on in this paper is a scalable structure which supports evolution and tailoring by
the methodologists for the project team member’s need with regards to project and process features.

1 INTRODUCTION

Information System Development (ISD) is different
each time, depending on the situation and context.
A given technique, notation or mechanism may be
used in a different way depending on the develop-
ment under consideration. A process (or method) that
has proved its power for certain kinds of development
may be quite unsuitable for others. There is no univer-
sal applicability of processes (Ralyte, 2001). There-
fore, there is a need for flexible approaches, adapt-
able to different kinds of development. The need for
situation-specific processes, to better satisfy particu-
lar situation requirements, has already been empha-
sized (van Slooten and Hodes, 1996; Brinkkemper
et al., 1998).

Moreover, there is an increasing need for
lightweight processes by opposition to heavyweight
ones. Lightweight processes increase project team
members (or application engineers) involvement on

the contrary of heavyweight processes where the only
significant choice is made by methodologists who
chose the development process. Lightweight pro-
cesses focus on finding the best way for the current
situation. Project team members choose from as many
alternative paths as possible.

Indeed customization of ISD processes (Ralyte,
2001; Brinkkemper et al., 1998) have mainly be
thought of for the person in charge of building a new
process, i.e. the methodologists, in order to allow
him/her to adapt the process to the need of its com-
pany or projects. But there is also a need for cus-
tomizations dedicated to project team members, to
provide them with guidelines (or heuristics) which
are to be followed while performing their daily task
(Gnatz et al., 2001; Mirbel and de Rivieres, 2002b).
The adaptation is handled through the breaking down
of guidelines (heuristics) into fragments, which may
then be selected if they answer to the project team
member need.

131Mirbel I. (2004).
A POLYMORPHIC CONTEXT FRAME TO SUPPORT SCALABILITY AND EVOLVABILITY OF INFORMATION SYSTEM DEVELOPMENT PROCESS-
ES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 131-138
DOI: 10.5220/0002608101310138
Copyright c© SciTePress



It is recognized as important to benefit from the ex-
periences acquired during the resolution of previous
problems through reuse and adaptation mechanisms
(Cauvet et al., 2001). With regards to software de-
velopment, reuse has been widely studied from the
product point of view (Gamma et al., 1995; Fowler,
1997), but it is now also a challenging issue to handle
it from the process point of view.

Moreover, the constant evolution of techniques,
mechanisms and technologies provided to support
ISD requires evolution-oriented development pro-
cesses. Adapted processes have to be developed
to take advantage of new technologies. Real world
evolves and implies changes of the supporting infor-
mation system. Handling correctly information sys-
tem evolution also means to use appropriate ISD pro-
cesses.

We propose a knowledge capitalization framework
to support evolvability of ISD processes. Reuse and
customization are handled through process fragments
stored in a dedicated repository. This framework is
mainly dedicated to project team members and al-
low them to let others benefit from their experience in
solving ISD problem by storing their solution in terms
of fragments inside the repository. Our framework
also allows them to retrieve fragments corresponding
to their ISD problem by using the process fragment
repository. The key element of such a repository is
the means proposed to store and retrieve fragments.

From the methodologist point of view, we believe
capitalization could be much more useful if driven to
focus on critical aspects of development process ; and
customization much more efficient if kept inside the
boundaries of the company development process.

To answer this twofold need (fragment manipula-
tion means for project team members and process
control for methodologists), we propose a scalable
and polymorphic structure, the context frame. It
helps project team members to specify fragments in
a way anticipating their reuse, and to well express
their ISD problem to find a suitable solution. The
context frame can be seen as an ontology dedicated
to ISD processes. Ontology for development pro-
cesses is a current high topic of work in the field of
method engineering (Saeki, 2003). Our context frame
is managed by methodologists allowing them both to
drive the project team members on critical aspects
when creating and retrieving fragments and to keep
customization (supported by fragment selection) in-
side the boundaries of the company development pro-
cess. The context frame is not a fixed structure and
evolves through the time. Its content is controlled
by the methodologists, giving them a way to support
the evolvability of development processes and project
needs. It is the purpose of this paper to present this
context frame.

We start first by presenting the whole framework

in section 2. Then, the context frame is described in
section 3. The different kinds of context required to
support scalability in ISD processes are first presented
in section 4. Then, in section 5, their usefulness for
ISD by reuse, as well as for ISD for reuse is discussed.
Finally, we conclude in section 6.

2 A FRAMEWORK TO
CAPITALIZE KNOWLEDGE
ABOUT ISD PROBLEM
SOLVING

During ISD, heuristics are elaborated and may be use-
ful to other teams facing close situations in different
projects independently of the functional domain as
well as the technical domain. Our approach allows
to reassemble heuristics accumulated by project team
members to help focusing on critical aspects of de-
velopment and to take advantage of the way to solve
problems. We focus on the re-use of the way of work-
ing, on the way to apprehend ISD tasks.

Our approach aims at guiding project team mem-
bers to most appropriately apply a set of techniques
and methods so as to focus on critical aspects of ISD
in order to better handle its complexity. Therefore, we
propose a context frame which allow methodologists
to define the working context and project team mem-
bers to situate their work with regards to this con-
text. The context frame is managed by the method-
ologists and allows them to set the boundaries inside
which customization will be possible with regards to
the project team members needs. It allows methodol-
ogists to provide customized processes and to keep
project team members inside the framework of the
process used by the company. Project team members
use the context frame defined by methodologists to
characterize the new fragments they introduce in the
repository. By situating their fragment with regards to
the criterias of the context frame, they anticipate their
reuse in the framework of the company development
process. Project team members also express their ISD
problem with the help of the context frame to select
and reuse fragments from the repository through ISD
by reuse.

The main goal of the process fragment reposi-
tory is to help project team members through their
daily tasks. Most of the time, ISD processes are
defined with regards to the phase they are involved
in (Henderson-Sellers and Edwards, 1990; Boehm,
1988; Royce, 1970), with regards to the results to
be obtained (Finkelstein et al., 1990; Franckson and
Peugeot, 1991). But to get a valuable result, it is
not enough to use the dedicated diagram(s) and con-
cept(s) at the right moment. It is also necessary for

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

132



the project team members to understand what he/she
is working on and why he/she is using such a dia-
gram or concept has to be taken into account (Potts,
1989; Rolland and Souveyet, 1995; si Said and Rol-
land, 1998). In our approach, ISD tasks are driven by
the problem one may face through his/her daily work,
instead of the result he/she wants to get.

Notations provided to support ISD tasks are more
and more richer (Object Management Group, 2001).
They also become more and more complex and there-
fore seems to be the heart of ISD: project team mem-
bers focus on the use of the different diagrams or con-
cepts provided by the notation much more than on
the tasks to be performed. Our approach helps in re-
centering the work on tasks instead of notation.

With regards to ISD for reuse, fragments are de-
fined through an intention inciting them to carefully
specify the aim of the fragment. A fragment context
is associated to each new-built fragment to enforce its
definition with regards to the working framework.

With regards to ISD by reuse, requests are ex-
pressed in terms of problem and problem context. So-
lutions are given in terms of route-map made of frag-
ments including guidelines and heuristics to help in
ISD tasks.

An example of fragment is given in fig-
ure 1. In this figure, a fragment named
Requirement-out-of-scope is presented. Its
fragment context indicates it presents guidelines for
when dealing with a running software. There is an
associate fragment DB-out-of-scope, which is
complementary. There is no incompatible fragments.
The intention explain the purpose of the fragment
which is to help in documenting the running part of
the application under which the development will take
place. Associated guidelines in UML are then given.

Name

Fragment Context

Related Fragments

Non−compatible Fragments

{[base − software − running software]}

BusinessDomain−Out−of−Scope − complementarity − 0.75

 − 

Intention To document existing parts of the running software useful to

new development.
understand the purpose of the new software but not directly related to the

Guidelines

Description

Notation UML use−case diagrams

Add use−cases dedicated to running functionalities

with <<out−of−scope>>.
increasing the understanding of the software. Stereotype them

Group all the use−cases stereotyped <<out−of−scope>> in a 
package (or set of packages) also stereotyped <<out−of−scope>>

Requirement−Out−of−Scope

Figure 1: An example of fragment

Figure 2 summarizes the structure of our frame-
work with the two main sources of information: the
context frame and the process fragment repository,
on top of which mechanisms for ISD by re-use and
for re-use are provided to the project team members,
while means of context management are provided to

methodologists.

Figure 2: Framework overview

In this paper, we focus on the context frame. And
we show how useful it is for ISD by reuse and for
reuse.

3 A SCALABLE AND
POLYMORPHIC CONTEXT
FRAME

The context frame allows methodologists to define a
common working frame for all the project team mem-
bers and all the projects in the company. The work-
ing frame is defined through a context made of crite-
rias and allowing then project team members to better
qualify their ISD problem in order to get a customized
solution.

A criteria represents a point of view or an aspect
on the development process that methodologists want
to highlight in order to help project team members to
apply techniques and methods to focus on critical as-
pects of the development process. Through ISD for
reuse, criterias help in qualifying fragments to antici-
pate and ease their reuse. Through ISD by reuse, crite-
rias help in specifying the problem to solve in order to
get adapted fragments. Information characterizing the
software to develop (Software to develop includes a
User Interface, Software to develop includes a
database, Software to develop is distributed,
Software to develop is build on a running applica-
tion), the competence of the project team members
in charge of the development (expert, medium, begin-
ner), and the project management features (Delivery
strategy, Realization strategy, Time pressure) are ex-
ample of useful criterias to customize the process.

In the following, we discuss first the structure of
the context frame. Then, we show how to use it.

A POLYMORPHIC CONTEXT FRAME TO SUPPORT SCALABILITY AND EVOLVABILITY OF INFORMATION
SYSTEM DEVELOPMENT PROCESSES

133



4 CONTEXT FRAME
DEFINITIONS

A context frame is a tree which root-node is the most
generic criteria called Base. Leaf-nodes correspond
to criterias or families of criteria.
• A criteria is a leaf node in the tree. It is described

by its name. Examples of criterias are software to
develop includes a database, or guidelines ded-
icated to expert designers.

• A family of criteria is a non-leaf node with at least
two sub-nodes (which could be criteria or family
nodes). A family is described by a name and infor-
mation about relationships among the different cri-
terias or sub-families constituting the current fam-
ily. Families are interesting to allow a better un-
derstanding of criterias entered in the framework,
from the project team member point of view as
well as from the methodologist point of view. For
instance, as we deal with different criterias char-
acterizing the software to be developed: Software
to develop includes a User Interface, Soft-
ware to develop includes a database, Software
to develop is distributed, Software to develop
is build on a running application, we can group
all these criterias into a family called Software
to develop. This non-leaf node helps methodolo-
gists to maintain the context frame and project team
members to understand and use the grouped crite-
rias.
The objective of the context frame is to help:
– through ISD for reuse by providing a means to

organize fragments and
– through ISD by reuse by providing a means to

select the right fragments to build a solution cor-
responding to a problem.

Therefore, additional information aiming at bet-
ter specifying the way criterias belong to a family
helps in using them to constitute a coherent context.
Two kinds of information are provided:
– The order field indicates if direct criterias or

sub-families are ordered (ord = o) or not
(ord = no). For instance, if development
process phase is a family, analysis,
design, implementation and test are
criterias which are ordered (analysis is pro-
cessed before design, which is processed be-
fore implementation, which is processed
before test). It is interesting to indicate it be-
cause when retrieving fragments associated with
the design criteria for instance, it may also be
interesting to look at fragments associated with
the analysis and implementation crite-
rias, especially if one is interested in the begin-
ning and ending steps of the design phase.

– The exclusion field indicates if direct criterias
or sub-families are exclusive (exc = e) or not
(exc = ne). For instance, there is in the
repository a criteria related to project time pres-
sure. Guidelines may be given for project under
high time pressure as well as project under low
time pressure. Therefore time pressure is a
family and low time pressure and high
time pressure are criterias. We specify
them as exclusive criterias because guidelines
associated to high time pressure project
are not compatible with guidelines associated
with low time pressure project and could
not be provided in the same solution to a ISD
problem.

The exclusion field is associated to the family be-
cause if only some of the sub-nodes are exclusive
among them, it means that a sub-family has to be
isolated for these specific sub-nodes.

Definition 1 (Context frame). A context frame,
CF , is a tree where:
• the root node is defined as <name=base, exc=ne,

ord=no, type=root>,
• non-leaf nodes are family defined as <name, exc,

ord, type=family>,
• leaf nodes are criterias defined as <name, exc, ord,

type=criteria>

Figure 3 shows the structure of the context frame.

Figure 3: Context frame

Definition 2 (Criteria). A criteria is fully defined
as a path from the root node base to a node nn of
the context frame.
Cr = [base, n1, ..., nn] with base, n1, ..., nn ∈ CF

If nn is a family node, then the exclusion field must
be different from e because one of its criterias has to
be chosen inside the family.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

134



if typenn
= family, excnj

6= e

Definition 3 (Compatibility). Two criterias are
compatible if they do not share in their definition a
common family node ni with an exclusion field equal
to e.

Cr1 comp Cr2

∀ni ∈ Cr1 and nj ∈ Cr2

if ni = nj then excni
6= e

Definition 4 (Context). A context is defined as a set
of compatible criterias.

Co = {Cr1, ..., Crn},
∀Cri, Crj ∈ Co,Cri comp Crj

An example of context frame is given in fig-
ure 4. Three families of criterias are presented in
this figure: Designer expertise, Software
to develop and Project. The Designer
expertise family helps in specifying for whom
the guidelines are dedicated to: Experts are distin-
guished from Medium and Beginners. This fam-
ily is specified as ordered because guidelines asso-
ciated with the Beginner criteria may for instance
complete guidelines associated with the Medium cri-
teria when someone doesn’t know exactly how to con-
sider the expertise of the designers under considera-
tion. And they are specified as non-exclusive because
it could be meaningful to extract for instance fragment
dedicated to Medium and Beginner designers in a
same solution.

The Software to develop family groups
criterias related to the qualification of the software to
be developed (Mirbel and de Rivieres, 2002a). We
distinguish the fact that the application to be devel-
oped includes a user-interface (UI), a database (BD),
is distributed (Distributed) or is built on top of
a running application (Running software). This
last criteria is presented as a family because differ-
ent aspects of a running software may be considered
: Functional domain, Interface and Code
(Mirbel and de Rivieres, 2003). Again a distinction
is done among weak, medium and strong reuse of
existing code, functional domain and interface. The
Software to develop criteria is described as
non-ordered because the different sub-families are
non-related criterias. And they are described as non-
exclusive because they may be associated with a same
problem, solution or fragment. Weak, Medium and
Strong criterias are considered as non-ordered be-
cause a fragment dedicated to guidelines to weakly
keep the code for instance may not necessary be com-
plementary to the one dedicated to keep the code in
a medium way. And on the contrary, it is not forbid-
den also to search for a solution including for instance
Medium and Strong criterias. Therefore, they are
specified as non-exclusive.

The last family, project, groups criterias char-
acterizing the project. It has been shown that
it is important to take into account project fea-
tures when working on methodological aspects of
ISD (van Slooten and Hodes, 1996). In this
example, Delivery strategy, Realization
strategy and Time pressure aspects are taken
into consideration. The three families are examples
of exclusive criterias: there is only one Delivery
strategy chosen for a project and the different
kinds of strategies (At once, incremental and
evolutionary ) can’t be mixed. The remark is
the same for the Realization strategy. With
regards to Time pressure, the associated crite-
rias are also exclusive, because guidelines for project
under a high time pressure are not compati-
ble with guidelines dedicated to project under a low
time pressure.

An example of criteria taken from figure 4 is:
[base - software to develop -
running software - code - weak].
An example of context is {[base - software
to develop - running software -
code - weak], [base - software to
develop - DB], [base - Designer
expertise - Medium]}

5 CONTEXT FRAME IN USE

The context frame is a key element of our framework.
In the following, we show how it is useful for the
methodologists and for the project team members to
support ISD for reuse and ISD by reuse.

Indeed, one unique context, called the global con-
text, is created and maintained by the methodolo-
gists in the company. They are the only one allowed
to build the global context customized for the com-
pany development process. It represents the ontology
shared by all the projects and project team members
with regards to ISD. The global context is used by
the project team members when they build new frag-
ments and when they search the repository for frag-
ments organized in route-map dedicated to their prob-
lem. Contexts associated to fragments and problems,
as it will be explained in the following, are subsets of
the global context.

5.1 Context and criteria
management

A global context is defined and managed by the
methodologists. It allows them to define a single
working space shared by all the projects and project
team members in the company.

A POLYMORPHIC CONTEXT FRAME TO SUPPORT SCALABILITY AND EVOLVABILITY OF INFORMATION
SYSTEM DEVELOPMENT PROCESSES

135



Figure 4: Example of context frame

Definition 5 (Global context). The global context
is defined as a set of (at least one) compatible criterias.

GC = base, C1, ..., Cn

The global context is shared by all the project team
members who select in it the criterias they are in-
terested in when building a new fragment or when
searching for fragments in the repository. Project
team members can not add new criterias. They have to
use the ones defined by the methodologists. Method-
ologists make the global context evolve by refining
existing criterias or adding new nodes under the base
node.

Evolution is a key issue of the structure because it
allows to always drive the project team members to
focus on critical aspect(s) of the development what-
ever the process evolution is.

When they refine existing criterias, methodologists
have to take care about the associated fragments. In-
deed, fragments are always associated to criteria node
of the global context. If a criteria node n (leaf node)
is refined into a family node (non-leaf node) with cri-
teria sub-nodes n1, .., nn (leaf nodes), then method-
ologists have to modify each fragment associated to n
in order to associate it to at least one of the sub-nodes
nn (nn ∈ n1, .., nn).

5.2 Context and ISD for reuse

A fragment context is associated with each fragment.
It helps in situating the fragment in the repository
with regards to the aspects of the development pro-
cess which have been emphasized by methodologists;
it anticipates fragment reuse and allows to provide a

suitable solution to a given ISD problem when search-
ing the repository.

Definition 6 (Fragment context). The fragment
context is defined as a set of at least one compatible
criteria taken from the global context.

FC = {C1, ..., Cn}
∀Ci ∈ FC,Ci ∈ GC

∀Ci, Cj ∈ FC,Ci comp Cj

Each criteria constituting the fragment context has
to end with a criteria node (leaf node):

• by definition it is not allowed to end a criteria with
a family node (non-leaf node) which exclusion field
is equal to e (cf section 4).

• An exclusion field equals to ne would be equivalent
to a fragment context including all the sub-nodes
of the family node (non-leaf node) under consider-
ation, which means that the criteria would not be
discriminant.

Therefore, only criteria nodes (leaf node) are al-
lowed as terminal nodes in the criteria definition of
the fragment context.

∀Ci ∈ FC,Ci = [base, ..., nj ], typenj
6= family

5.3 Context and ISD by reuse

A problem context is associated to each problem (and
its solution expressed in terms of fragment route-
maps) to help in focusing on solutions dedicated to the
problem. By comparing the fragment contexts and the
problem context, fragments are selected and adapted

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

136



solutions are elaborated. The problem context is given
within the problem definition to search the repository.
Necessary criterias indicate aspects the project team
member is interested in. Forbidden criterias indicate
aspects the project team member is not interested in.
It could be useful to specify it sometimes to be sure
the fragments including these (forbidden) aspects will
be removed from the solution before it is presented.

Definition 7 (Problem context). A problem context
is defined as a set of at least one compatible necessary
criterias and a set of compatible forbidden criterias.
All criterias are taken from the global context.

PC =< CN,CF > where
CN = {C1, .., Cn}, CF = {C1, .., Cm}

∀Ci ∈ CN, @Ci ∈ CF
∀Ci ∈ CN,Ci ∈ GC
∀Ci ∈ CF,Ci ∈ GC

∀Ci, Cj ∈ CN,Ci comp Cj

∀Ci, Cj ∈ CF,Ci comp Cj

By definition, it is not allowed to end a criteria with
a family node (non-leaf node) which exclusion field is
equal to e (cf section 4). And an exclusion field of the
terminal node describing the criteria equals to ne is
equivalent to a problem context including all the sub-
nodes.

6 CONCLUSION

In this paper we presented the context frame, a poly-
morphic structure to help supporting evolvability and
scalability of ISD processes through knowledge capi-
talization and sharing. The framework we propose is
mainly based on a process fragment repository and a
global context frame. The process fragment reposi-
tory is dedicated to the storing of process fragments
which may be reused through ISD by reuse. The
global context frame supports evolvability of ISD pro-
cesses through the use of criterias to better specify
fragments, problems and solutions.

From the methodologists point of view, there is a
need for a common framework for all the project team
members working in the company and for means to
keep project team members in the boundaries of the
company development process. The context frame
encourages project team members to focus on spe-
cific/critical aspects of the project they are involved
in and the development process they use. It should
help project team members to always take as much
advantage as possible from the last version of the de-
velopment process chosen, adapted and used in the
company. It is a scalable structure which supports
evolution and tailoring by the methodologists for the
project team member’s need with regards to project
and process features.

From the project team member point of view,
means are provided:

• to help to select the right fragments to solve his/her
problems and

• to allow him/her to qualify its reusable element of
solution when he/she add it as a new fragment in
the repository.

The context frame we propose answers these needs.
Criterias are a means to closely match project team
member’s need and to take into account their evolu-
tion.

A case tool is under development to validate the
approach on a real case in companies where attempts
have already been made to customize the develop-
ment processes and to provide dedicated solutions
through process fragments (Mirbel and de Rivieres,
2002a).

In the future, we would like to weight fragments
with regards to the expertise level of the project team
members introducing the fragments into the reposi-
tory. We will also introduce support to fragment com-
parison needed when entering a new fragment in the
repository.

As the main goal of this approach is still to ben-
efit from the experiences acquired during the reso-
lution of previous problems, it is also crucial for us
to provide means to capitalize information about the
way fragments and route-maps are reused through the
proposed framework. Therefore, our future works in-
clude the integration of tracking information to capi-
talize about the way ISD by reuse is handled.

REFERENCES

Boehm, B. (1988). A spiral model of software development
and enhancement. Computer, 21:61–72.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1998). As-
sembly techniques for method engineering. In 10th In-
ternational Conference on Advanced Information Sys-
tems Engineering, Pisa, Italy.

Cauvet, C., Rieu, D., Fron-Conte, A., and Ramadour,
P. (2001). Ingnierie des systmes d’information,
chapter Rutilisation dans l’ingnierie des systmes
d’information, pages 115–147. Hermes.

Finkelstein, A., Kramer, J., and Goedicke, M. (1990). View-
point oriented software developement. In Le gnie logi-
ciel et ses applications, Toulouse, France.

Fowler, M. (1997). Analysis Patterns: Reusable Object
Models. Object Technology Series. Addison-Wesley,
Reading, Massachusetts.

Franckson, M. and Peugeot, C. (1991). Spcification of the
object and process modeling language ESF. Technical
Report D122-OPML-1.0.

A POLYMORPHIC CONTEXT FRAME TO SUPPORT SCALABILITY AND EVOLVABILITY OF INFORMATION
SYSTEM DEVELOPMENT PROCESSES

137



Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Publishing
Company, New York, NY.

Gnatz, M., Marschall, F., Popp, G., Rausch, A., and Schw-
erin, W. (2001). Modular process patterns supporting
an evolutionary software development process. Lec-
ture Notes in Computer Science, 2188.

Henderson-Sellers, B. and Edwards, J. (1990). The object-
oriented systems life cycle. Communications of the
ACM, 33(9):142–159.

Mirbel, I. and de Rivieres, V. (2002a). Adapting Analy-
sis and Design to Software Context: the JECKO Ap-
proach. In 8th International Conference on Object-
Oriented Information S ystems.

Mirbel, I. and de Rivieres, V. (2002b). Introducing Flexibil-
ity in the Heart of Analysis and Design. In 6th world
multiconference on systemics, cybernetics and infor-
matics (SCI).

Mirbel, I. and de Rivieres, V. (2003). UML and the Unified
Process, chapter Towards a UML profile for building
on top of running software. IRM Press.

Object Management Group (2001). Uml specification.

Potts, C. (1989). A generic model for representing design
methods. In 11th International Conference on Soft-
ware Engineering.

Ralyte, J. (2001). Ingenierie des methodes a base de com-
posants. PhD thesis, Universite Paris I - Sorbonne.

Rolland, C. and Souveyet, C. (1995). An approach for
defining ways-of-working. Information Systems Jour-
nal.

Royce, W. (1970). Managing the development of large soft-
ware systems: Concepts and techniques. In WESCON.

Saeki, M. (2003). Toward automated method engineering:
Supporting method assembly in came. In First Inter-
national Workshop on Engineering methods to sup-
port information systems evolution, Geneva, Switzer-
land.

si Said, S. and Rolland, C. (1998). Formalising guidance for
the CREWS goal-scenario approach to requirements
engineering. In Eight European-Japanese Conference
on Information Modelling and Knowledge Bases.

van Slooten, K. and Hodes, B. (1996). Characterizing IS de-
velopment projects. In S. Brinkkemper, K. Lyytinen,
R. W., editor, IFIP TC8, WG 8.1/8.2, pages 29–44.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

138


