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Abstract: The rapidly growing use of XML in the development of business to business (B2B) applications requires 
new approaches in building enterprise application infrastructures. In this field the modeling of business 
domain semantics, thus focusing on the user’s perception of data, in contrast to physical data representation, 
is gathering more and more importance. It is increasingly important to provide a sound mathematical 
foundation on modeling business domains, together with a well defined way to map business domain 
semantics to XML-structures. In our recent work we propose a semantic meta model, built on set- and 
algebra-theory, considered to serve for the formal definition of operations and transformations and to prove 
the correctness and completeness of design methods. Based on the mathematical model we propose an XML 
language to construct domain models and to formally express business domain semantics. The language not 
only allows to express structural schemas and static constraints but also provides to formulate dynamic 
business rules, which is considered critical for the quality of a business domain model and which is 
therefore centrally focused in our work. In addition we provide an XML syntax to encode domain instances 
and we apply standardized XML technologies to formally verify the validity of domain instances with 
respect to their specifying domain models. With our paper we contribute to the field of formal software 
engineering by proposing a business domain modeling language based on XML and founded on a sound 
mathematical model. The expression of dynamic business rules and the application of XML technologies to 
formally verify validity of domain instances and of entire domain models are the strength of our approach. 

1 INTRODUCTION 

The field of research on semantic data models has 
grown rapidly over the last years (Schmidt 1975, 
Peckham 1988, Gogolla 1991, Schnase 1993, Chen 
1999, Trastour 2002) with a continuous change of 
focus towards modeling complex business domains. 
We contribute to this development with our recent 
work by introducing a semantic meta model based 
on set- and algebra-theory. It provides a framework 
for the specification of complex business domains, 
and it serves as a basis for the formal definition of 
operations, mappings and transformations and to 
prove the correctness and completeness of new and 
extended design methods. Algebraic specifications, 
by means of algebraic equations (called Σ-
equations), serve to formally define validity of 
business domain models as well as of domain 

instances. Our special focus is on the seamless 
integration of business knowledge in form of static 
and dynamic business rules, which highly influences 
the expressiveness and quality of a business domain 
model. 

On the other hand XML, as a standardized data 
description language, is gathering more and more 
importance in the field of data interchange in B2B 
applications. XML-based data exchange between 
different systems requires transformations of XML-
structures. These transformations in turn have to be 
proved for equivalence and soundness. 

In our work we propose a formal method to map 
business domain semantics to XML-structures based 
on our theoretical model, and we additionally 
provide an XML-encoding for domain instances. 
This allows to formally verify validity of XML-
based business domain models and of XML-encoded 
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domain instances and it provides for the formal 
proof of equivalence and soundness of 
transformations on XML-structures. 

The contribution of our recent work to the field 
of formal software engineering is 
• to provide a sound mathematical foundation in 

form of a semantic meta model, which builds a 
framework for the specification of complex 
business domains, 

• to provide a mathematical method which allows 
to verify validity of business domain models 
and of domain instances, 

• to propose a formal method how to apply 
domain semantics to XML-structures, 

• to outline an approach, which allows to leverage 
standardized XML-technologies to verify 
validity of XML-based business domain models 
as well as of XML-encoded domain instances. 

2 A SEMANTIC META MODEL 
FOR SPECIFYING BUSINESS 
DOMAINS 

As core of our work we introduce a semantic meta 
model, which allows to formally specify business 
domains. Business domains are commonly 
expressed by means of their concepts (e.g. person, 
car, address, ...) and by means of relationships 
between these concepts (e.g. ownership, residence, 
...). Directed graphs are considered to serve as the 
basis to describe business domain models. Research 
in the field of semantic nets (Rada 1990) has 
successfully proven that directed graphs are well 
suited to express business domain concepts and 
relationships between business domain concepts. We 
call such graphs domain graphs. We furthermore 
introduce types on nodes and links of directed 
graphs, so that business domain concepts are 
mapped to node-types and so that relationships 
between these business domain concepts are mapped 
to link-types. Recursive link composition and type 
hierarchies are proposed as powerful means of 
abstraction. Structural constraints on types, together 
with a formalism to describe complex dependencies 
between model elements, are used to express 
business knowledge in form of business rules. The 
consequent separation of structure and content in 
combination with the proposed method to define 
business rules, enforces the introduction of a three-
layer meta model. We also introduce algebraic 
specifications to formally define validity of domain 
graphs as well as of domain instances. A number of 
simplified examples and graphical views are used to 

provide an intuitive approach to the underlying 
mathematical theory. 

2.1 Typed Directed Graphs – 
Foundation of the Meta Model 

An extended version of directed graphs serves as the 
fundamental basis for our approach. In contrast to a 
common definition, where a directed graph (DG) 
consists of a set of vertices (nodes) and of a set of 
edges, we propose an extended definition by 
introducing the concept of links. Links allow to 
recursively specify connections between nodes of a 
directed graph. Every edge of a DG is represented as 
a link and every connected sequence of links forms a 
link in turn. This recursive approach serves as a 
powerful means of abstraction, which especially 
proves profitable when the goal is to model business 
domains with the necessity to view and describe 
those business domains at different levels of 
abstraction. 

By additionally defining mappings of nodes to 
node-types and of links to link-types, the concept of 
typed directed graphs (simply called typed graphs) is 
introduced. Two layers, called type-level and 
instance-level, provide a clear separation of type and 
instance. The graph type GT populates the type-
level: 

GT = (NT, LT)   NT... a set of node-types, 
LT ... a set of link-types. 

The typed graph TG populates the instance-level: 
TG = (N, L)     N... a set of typed nodes, 

L ... a set of typed links. 
Type mappings are defined: 

type: N → NT  and  type: L → LT   
Additionally nodes are mapped to node-values, so 
that a node of a typed graph can be written as a pair 
consisting of a node-value and of a node-type: 

n = 〈vnode, tnode〉;  tnode ∈ NT 
Typed links are defined recursively: 
1.  l0 = 〈(〈ns, nt〉), tlink〉; l0 ∈ L,    ns, nt ∈ N, 

tlink ∈ LT 
... every edge of the graph is represented 

(encapsulated) by a link. Such a link is called 
direct link (l0). 
2.  l = 〈( l1, l2, ..., lk), tlink〉; l, l1, l2, ..., lk ∈ L; 

k ≥ 1 ∧∀ i, 1 ≤ i < k : t(li) = s(li+1),  tlink ∈ LT 
... a connected sequence of links is a link in turn 

and it is called indirect link (l). s(l) maps a link to its 
source node and t(l) maps a link to its target node. 
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2.2 Three Layer Meta Model 

So far the graph type (GT) simply consists of a set 
of node-types and of a set of link-types. Business 
domain concepts are mapped to node-types and 
relationships between business domain concepts are 
mapped to link-types. Hence a graph type models a 
business domain and specifies the domain’s 
structure. Business rules express structural 
constraints on domain instances. Consequently they 
are specified as part of the graph type. In particular, 
the structural constraints are expressed on link-types 
and on node-types. Whereas one possibility is to 
specify constraints in form of structured values of 
the appropriate node- and link-types, the proposed 
approach is to express the structural constraints in 
form of distinct nodes and links as part of a directed 
graph, moreover, as part of a typed directed graph 
which is modeled at the type-level. This means, the 
graph type (GT) itself is extended to form a typed 
directed graph. The semantic of a specific constraint 
is then covered by a link of GT, whereas a value for 
a constraint whenever needed (e.g. a range for a 
cardinality constraint) is defined by means of a node 
of GT. 

This approach enforces the introduction of a 
third layer which we call meta-type-level. The layer 
is introduced, so that nodes and links at the type-
level are instances of meta-types. These meta-types 
are defined at the meta-type-level. 

More generally stated, nodes and links at the 
instance-level are instances of nodes at the type-
level, which in turn are instances of meta-node-
types. The three layers of the resulting meta model 
are depicted in Figure 1. 

 
 
 
 
 
 
 
 
 
 
At the meta-type-level, a set of meta-node-types 

and a set of meta-link-types define the model 
semantic. 

At the type-level, typed graphs are constructed to 
model specific business domains (e.g. the sales 
domain). 

At the instance-level, typed graphs are used to 
present business domain instances (e.g. a specific 
sales transaction). 

The entire three-layer model is called Domain 
Graph Model (DGM). 

At the instance-level a node of the typed graph 
represents either 
• an OBJECT i.e. an instance of a business domain 

concept (e.g. a specific person) or 
• a PRIMITIVE-VALUE ( instance of a primitive 

data type) (e.g. the integer value 20). 
A link at the instance-level represents a RELATION 
between an OBJECT and/or a PRIMITIVE-VALUE (e.g. 
a link of type residence may relate a specific person 
to a certain address, or a link of type birthDate may 
relate a person to a primitive DATE value). 

A simple analogy with E-R modeling concepts 
can be constructed, so that an OBJECT corresponds to 
an entity-instance, so that a PRIMITIVE-VALUE 
corresponds to an attribute-value and so that a 
RELATION corresponds to either a relationship-
instance or to an attribute-name respectively. 

At the type-level a node of the typed graph 
represents either 
• a business domain CONCEPT (e.g. Person), 

which specifies a type of  OBJECTs   or 
• a primitive DATA TYPE (e.g. Integer, Date, ...), 

which specifies a type of  PRIMITIVE-VALUEs or 
• a CONCEPT-RELATIONSHIP, a relationship 

between business domain concepts (e.g. 
residence), which is a link-(RELATION-) type  
     or  

• a CONSTRAINT-VALUE (e.g. a specific range for 
a cardinality constraint). 

A link at the type-level covers constraint semantics 
(e.g. a distinct super-type relation, a source-node-
type constraint, a cardinality constraint, ...), hence it 
is called a SEMANTIC-RELATION. The graph at the 
type-level is called Domain Graph (DoG) because it 
is the means to model business domains. 

At the meta-type-level the model semantic is covered 
by a set of meta-node-types which represent the 
types of possible nodes for the type-level, and by a 
set of meta-link-types representing all possible sorts 
of SEMANTIC-RELATIONs. 

2.3 Model Semantic 

Figure 2 lists the set of meta-node-types and the set 
of meta-link-types. Possible links between nodes at 
the type-level with respect to the nodes’ and links’ 
meta-types are also shown. 

 
 
 
 
 
 
 
 

Figure 1: Three-layer meta model 
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Meta-Node-Types 
bd_concept ... Instances represent business 

domain CONCEPTs (e.g. Person, Address, ...). 
p-type ... Instances represent primitive DATA TYPEs 

(e.g. Integer, String, Date, ...). 
bd-relat ... Instances describe relationships between 

business domain concepts (e.g. residence, 
ownership, ...). 

range ... Instances serve to specify valid ranges 
for cardinality constraints. 

condition ... Instances are used to formulate 
dynamic business rules. 

lt-sequ ... Instances constrain the sequence of 
intermediate links of composed RELATIONs 
(indirect links at the instance-level). 

 

 

Meta-Link-Types 
Meta-link-types cover the semantic of structural 

constraints. Instances of meta-link-types are 
SEMANTIC-RELATIONs at the type-level. 
super ... Instances of super relate types to their 

super-type. 
s-type ... Instances constrain the source-node-type 

of RELATIONs. 
t-type ... Instances constrain the target-node-type 

for RELATIONs. 
s-card, t-card ... Instances are used to model 

cardinality constraints. 
composition ... Instances of composition connect 

CONCEPT-RELATIONSHIPs to lt-sequ instances, 
thus constraining intermediate link sequences of 
composed RELATIONs. 

abstract ... Instances of abstract connect CONCEPTs 
or CONCEPT-RELATIONSHIPs to condition nodes 
in order to specify abstract types. 

if ... Instances represent if-branches of condition 
trees. 

else ... Instances represent else-branches of 
condition trees. 

2.4 Static and Dynamic Business 
Rules 

A major concern of our work is the seamless 
integration of business rules. In the proposed 
approach such business rules are defined in form of 
cardinality constraints which are specified on 
CONCEPT-RELATIONSHIPs. We distinguish between 
static and dynamic business rules. Dynamic business 
rules, in contrast to static ones, depend on the state 
of distinct domain instances. As an example one can 
think of a sales transaction which, depending on the 
age of the customer, allows only certain products to 
be added as line-items. In DGM such dynamic 
business rules are expressed in form of conditional 
cardinality constraints. Figures 3 and 4 provide a 
simplified example. Whereas Figure 3 shows a UML 
representation, Figure 4 outlines a graphical view of 
the appropriate domain graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Dynamic business rule expressed as annotation.

Person 
 
birthDate 

Sales-
Transaction 

customer 

line-item 

Item 

Product 
minAge 

spec 
[1..1] 

[0..n] 

[0..n] 

[1..1] 
An Item of 
certain product 
can be purchased 
by a customer 
only if the 
customer’s age is 
≥ the product’s 
minAge 

[0..n] 
[1..1] 
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Figure 4 provides a graphical representation of 

the set theory based formalism. It is more suitable 
and easier to read, especially as the presented model 
is based on graph theory. Note, that the 
representation in Figure 4 can be unambiguously 
transformed into the set theory based formalism. 
However, the used notation is not intended to serve 
as a graphical modeling language (although 
possible). Other graphical notations, such as used 
with UML (UML, 2001), are specifically designed 
to accomplish this task. Figure 4 demonstrates how a 
boolean expression is used to formulate a dynamic 
business rule. Path expressions are the means to 
select values out of distinct domain instances. These 
values serve as arguments for the boolean 
expression. Based on the result of evaluating the 
boolean expression, the condition tree (encircled in 
Figure 4) is traversed (if, else branches). The 
traversal results in a specific range node which 
specifies the cardinality constraint to be applied. 
OCL (OCL, 2002), a constraint language, has been 
adapted to the DGM in order to formulate dynamic 
business rules. 

2.5 Domain Graph Model - Summary 

DGM provides a semantic meta-model to formally 
specify and verify business domains. The meta-
model consists of three layers, which are called 
levels. The topmost layer is named meta-type-level 
and defines the model semantic. The medium layer 
is called type-level and hosts typed-directed-graphs, 
called domain graphs (DoGs), which model distinct 
business domains. The bottom layer is named 
instance-level, and it is the layer where instances of 

specific business domains, again in form of typed-
directed-graphs, are constructed. 

At the type-level, CONCEPTs and CONCEPT-
RELATIONSHIPs describe the basic domain structure, 
and constraints in combination with boolean OCL-
expressions are used to formulate static- and 
dynamic business rules. At the instance-level, 
OBJECTs, (PRIMITIVE-)VALUEs and RELATIONs 
compose domain instances, and they are constructed, 
so that they satisfy the structural constraints and 
business rules defined by their domain graph.  

The theory of algebraic specifications is applied 
to formally define validity. Algebraic specifications 
are based on algebraic signatures, so that a 
specification extends a signature with the formal 
construction of Σ-equations. A set of such Σ-
equation provides the formal specification of valid 
domain graphs and of valid domain instances. Figure 
5 outlines the basic building blocks of the DGM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 XML-ENCODING OF THE 
DOMAIN GRAPH MODEL 

Based on the semantic meta model we propose an 
XML-language to specify domain graphs (DoGs), 
thus modeling business domains. We call this 
language XDoG. We also provide an XML-

Figure 5: Domain graph Model (DGM)
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encoding for domain instances, so that instances of a 
business domain (e.g. specific sales-transactions) 
can be encoded in form of XML-structures. 

The decision to develop a business domain 
modeling language based on XML is motivated by 
several reasons. Beside its already leading role in 
data interchange in business to business (B2B) 
applications, XML is also gathering more and more 
importance in the field of semantic data modeling. 
Based on the foundation of the XML Information 
Set (W3C, 2004) and on a clear and simple syntax, 
the extensibility of XML is targeted towards the 
development of domain specific languages. Grouped 
around a set of stable and consistent standards, a 
rapidly growing number of tools and applications are 
established. This allows new developments to build 
on mature and well tested technologies and to 
benefit from a high amount of re-use. This, together 
with the widespread use of XML, leads to an ever 
growing number of XML-languages arising in the 
field of formal software engineering. Recent 
developments on Web-Ontologies (W3C, 2001) 
specify XML-languages which aim to define the 
terms used to describe and represent specific areas 
of knowledge. DAML+OIL (DAML + OIL, 2001) is 
an example of such languages. 

For our work, interoperability, standards 
compliance and the possibility to re-use software 
tools for practical implementations are the major 
motivations to develop an XML-language for 
modeling business domains as well as to provide an 
XML-encoding for business domain instances. 

Rather than providing the complete specification 
of the domain modeling language XDoG and of the 
XML-encoding for domain instances as part of this 
paper, we will focus on how we utilize XML 
technologies to model XML-based, valid business 
domains and how we apply standardized XML 
technologies to verify validity of XML-encoded 
domain instances. 

Figure 6 depicts how formal modeling languages 
in general and the XDoG language in particular are 
aligned with the domain graph model (DGM). 
Expressions of the XDoG language are used to 
encode a domain graph in XML thus modeling a 
business domain. The XDoG language itself is 
specified by means of an XML-Schema, which is 
derived from SpecDoG and which restricts the XDoG 
language to describe valid domain graphs (Figure 6 
(1)). A domain graph is encoded in XDoG and 
serves to specify valid domain instances (Figure 6 
(2)). Domain instances are XML-encoded in turn. 
The encoding follows an instance-encoding-
specification, which basically defines how OBJECTs, 
PRIMITIVE VALUEs and RELATIONs of a domain 
instance are represented as XML elements and 
attributes respectively (Figure 6 (3)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just like an XML-schema provides the structural 

constraints for XML-documents which are instances 
of that schema, a domain graph or the domain 
graph’s XML encoding respectively, constrains 
domain instances. With that relationship in mind, it 
seems straight forward to derive an XML-schema 
from a domain graph, or, even better, to directly 
encode a domain graph in form of an XML-schema. 
However, the XML-schema-language proves not to 
be powerful enough to express all constraints 
specified by a domain graph. Especially dynamic 
business rules, which play a central role in the DGM 
theory, but also the composition property of 
composed RELATIONs cannot be formulated by 
means of the XML-schema-language. On one hand 
this is the reason why the XDoG language was 
developed to provide an appropriate domain graph 
encoding. On the other hand it is the reason why an 
XML-schema alone is not sufficient to completely 
specify domain instances. Nevertheless, the XML-
schema-language is not entirely omitted in the 
specification of the domain instance encoding. 
Instead, constructs of the XML-schema-language are 
provided to specify the static constraints on XML-
encoded domain instances. This ‘static schema’ is 
derived from the XML-encoded domain graph. This 
is done by providing a set of transformation rules in 
form of an XSL-stylesheet, so that a standard XSL-
processor can generate the ‘static schema’ out of the 
XML-encoded domain graph (Figure 6 (4)). 

In order to perform validation of XML-encoded 
domain instances with respect to dynamic business 
rules and composed RELATIONs, a different approach 

Figure 6: DGM and XML-encoding 
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is required. A set of rules in form of another XSL-
stylesheet serves to generate the ‘XSL-validation-
stylesheet’ (Figure 6 (5)) out of the XML-encoded 
domain graph. The ‘XSL-validation-stylesheet’ is 
constructed, so that it contains XPath (W3C, 1999) 
expressions which properly encode path-expressions 
(they are part of boolean OCL expressions) which in 
turn specify dynamic business rules. The XPath 
expressions serve to select values or value sets out of 
domain instances. The ‘XSL-validation-stylesheet’ 
itself is an XSL-stylesheet. Applied to an XML-
encoded domain instance it generates a statement 
about the domain instance’s validity (with respect to 
dynamic business rules and composed RELATIONs). 
By performing schema-validation based on the 
‘static schema’ and by applying the ‘XSL-
validation-stylesheet’ (Figure 6 (6)), we provide 
validation of XML-encoded domain instances, 
utilizing standard XML technologies. 

4 RELATED WORK 

In the field of semantic data modeling a number of 
publications can be found, which apply set- and 
graph-theory to map domain semantics to structured 
hypertext systems and hyperlinked data sets. Our 
work, providing a semantic meta model together 
with a proposed XML-encoding, is highly related to 
this field of research, as the origin of XML can be 
found in hypertext systems. Moreover, hypertext 
systems may profitably be viewed as semantic nets 
(Wang, 1998), which actually provide the basis of 
our approach on business domain modeling. 

Beside publications on formal models for 
hypertext (Lange, 1990) and on constraining 
hypertext structures (Chidlovskii, 2000), a lot of 
related approaches stresses the need for our work: 
Bench-Capon and Dunne (Bench, 1889), in an early 
approach use a DAG (directed graph) structure and a 
set of constraints to model electronic documents. 
Contrasting our approach links are not typed and 
only represent the containment relationship, 
providing limited possibilities to express domain 
semantics. The formal hypertext model described in 
Tochtermann and Dittrich (Dittrich, 1995) provides 
some formally defined structural concepts, lacking 
mechanisms to define more powerful structural and 
relational constraints. Wang and Rada (Wang, 1998) 
have developed a semantic data model based on the 
concept of a semantic net, introducing organizational 
and relational link types on a DAG. In contrast to 
our work they do not provide an extensible type 
system and they also do not provide a mechanism to 
formulate dynamic constraints. Abiteboul and Hull 
(Abiteboul, 1987) in their well known approach on 

formalizing a semantic model recognize the 
importance of types which are used to model object 
structures (IFO model), but they do not provide link 
type hierarchies. E-R modeling, which is very much 
influenced by the work of P.P.Chen (Chen, 1976, 
Chen, 1999) provides another field of related work. 
In contrast to E-R approaches our work is highly 
built on graph theory and we centrally focus on the 
possibility to formulate dynamic business rules. 
H.V.Jagadish et.al. (Jagadish, 2001) provide an 
algebraic approach for query and transformation of 
XML tree structures. Whereas they propose a sound 
mathematical theory, their approach in contrast to 
our work applies to tree graphs rather than to 
directed graphs. The OMG with its MOF (Meta-
Object-Facility) specification (OMG, 2000), 
introduces a four layer meta-data architecture in 
contrast to the three layer model we are proposing in 
our paper. The Unified Modeling Language (UML) 
specifies semantics on the level of Meta-Models 
(UML, 2001, Schleicher, 2001), but does not 
provide expressing complex business rules as 
integral part (although the recent integration of OCL 
as part of UML is targeted in that direction). Recent 
developments in the field of (Web-) Ontologies 
(W3C, 2001), such as DAML+OIL, aim to define 
the terms used to describe and represent specific 
areas of knowledge. They provide expressing object 
constraints, but are limited in specifying dynamic 
constraints which express complex element 
dependencies (Trastour, 2002). 

Our work is mainly build on a theoretical 
approach which is inherently complex, especially 
concerning the integration of dynamic business 
rules. Whereas most of the related work, discussed 
in this section, has already successfully proven its 
applicability and usefulness in many practical 
implementations, applications, providing a proof of 
concept for our approach, are currently still under 
construction. 

5 CONCLUSION AND FUTURE 
WORK 

In this paper we have presented the theory of a 
three-layered semantic meta model for specifying 
business domains, which we call domain graph 
model (DGM). We have introduced a Domain Graph 
(DoG) as a directed graph with typed nodes and 
typed links which models business domains at the 
type-level of the DGM. We have outlined, how 
domain semantics are applied to a DoG and how 
static and dynamic business rules, playing a central 
role, are seamlessly integrated by specifying types, 
structural constraints, and conditions. We have 
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discussed how construction rules for DoGs are 
specified at the meta-type-level, how business 
domains are modeled at the type-level and how valid 
domain instances are provided at the instance-level. 
This leads to a clear separation of structure and 
content and is proposed as a flexible way to deliver 
semantic data. The concept of type hierarchies as 
well as the approach of recursive link composition 
were introduced as powerful means of abstraction. 

We have based the domain graph model (DGM) 
on set- and algebra- theories, providing a sound 
mathematical foundation for the formal definition of 
operations and transformations and to prove the 
correctness and completeness of design methods. 
The formal verification of valid domain graphs and 
of valid domain instances, by use of algebraic 
specifications, satisfies the requirement for 
robustness of semantic data. It was outlined, that by 
proposing an XML-encoding for domain graphs and 
for domain instances we provide an approach to 
apply domain semantics to XML-structures. This 
allows to utilize DGM theories for interchange of 
semantic data in XML-based B2B applications. 

We have discussed structural constraints, the 
specification of static and dynamic business rules 
and different abstraction mechanisms. The definition 
of operations, built on the mathematical basis of the 
DGM, is considered to specify additional dynamic 
aspects as part of future work. Manipulating a 
domain instance by inserting, deleting or updating 
nodes and links, thereby maintaining consistency 
and validity of the domain instance are such 
dynamic aspects to be specified. New and extended 
design methods, which can be formally specified 
and verified, are seen to be another profitable output 
of future work based on this paper. 
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