
OPEN SOURCE VS. CLOSED SOURCE

Vidyasagar Potdar, Elizabeth Chang
School of Information Systems, Curtin University of Technology, Perth Australia 6845

Keywords: Open Source, Open Source Software Development Process

Abstract: Open source software development represents a fundamentally new concept in the field of software
engineering. Open source development and delivery occurs on Internet time. Developers are not confined to
a geographic area. They work voluntarily on a project of their choice. Developers work for peer-recognition
and self-satisfaction. Open Source software is always in an evolutionary stage: it never reaches a final stage.
As new requirements emerge the software is enhanced by the user/developers. In this paper, we give an
introduction to the insights of open source software development. We then elucidate the perceived benefits
and point out the differences between open source and closed source software development approaches.

1 INTRODUCTION

The concept of free software is not new. It had been
here since 1960s, universities, such as MIT and
corporate firms such as Bell Labs freely used source
code for research [Webber 2000, Perens 1998].
Software was not a means of revenue generation. It
was used to hook more and more customers to buy
new computers [Malcolm 1998]. In early 1980s,
Microsoft started writing software with the sole
purpose of profit. It gave only compiled code; source
code was hidden from the user. This move had a
great impact on the programmer community,
particularly at MIT. Richard Stallman, researcher at
MIT, was frustrated because he could no longer
modify his software to satisfy his requirements. As a
result he founded the “Free Software Foundation”
(FSF) to develop and distribute software under the
General Public License history (GPL) whose main
motive was to prevent proprietarization of
cooperatively developed software. Around the same
time Bruce Perens defined a set of guidelines that a
software license must grant its user, and he called
this Open Source Initiative (OSI). In this paper we
describe the open source software development and
compare it with closed source software
development. The paper is organized as follows. In
section 2, we describe how open source software is
developed. In section 3, we compare open source
and closed source software development approaches.

2 OPEN SOURCE SOFTWARE
DEVELOPEMNT

Bruce Perens [Perens 1998] defines that Open
Source is a specification of what is permissible in a
software license for that software to be referred to as
Open Source. It should be freely distributed, it
should come with it's source code, it should allow
modifications and derived works, it should maintain
integrity of the author's source code, it should not
discriminate against persons or groups nor should it
discrimination against any fields of endeavor, the
license must not be specific to a product and it
should not contaminate other software. To put it in
simple words, software that violates any of the
statements mentioned in the formal definition of
open source is not open source software e.g. trial
software’s, use restricted software, shareware,
freeware, royalty free binaries, royalty free libraries
etc.

2.1 Who is an open source developer?

Simply put, “any one who contributes to the open
source project is an open source developer”, such as
a user of the software, a developer who develops the
software, a debugger or hobbyist who likes spending
time on open source, or a promoter who funds such a
development.

2.2 What do they do in Open Source?

Open source developers are involved in a variety of

609
Potdar V. and Chang E. (2004).
OPEN SOURCE VS. CLOSED SOURCE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 609-613
DOI: 10.5220/0002603206090613
Copyright c© SciTePress

activities such as designing, coding, debugging,
using, etc. Each activity occurs simultaneously.
Developers are free to choose whichever project
they want to work. Open source developers are
highly efficient; they don’t spend long hours by
starting projects from scratch, rather they find a
similar software and makes the additional changes to
suit their requirements [Raymond 2000]. Parallel
debugging is the key to open source success
[Valloppillil 1998]. Users also play a vital role in
the debugging process by reporting bugs to
developers or sometimes fixing it themselves. This
is considered the best way to test the software
because these users actually act as beta testers. Apart
from this the main task of open source developers is
releasing new versions of the software that is bug
free. Developers are well aware that users are the

best beta testers. So the more often the software or
component is released the more often we can expect
bug reports, and can try and fix it to make the
upcoming version more robust.

3 OPEN SOURCE VERSUS
CLOSED SOURCE SOFTWARE
DEVELOPMENT

OSSD is a recent phenomenon, while traditional
closed source software development has been here
since the dawn of software development. One major
difference between these two models is source code
visibility. In this section we will point out most of
the differences between these approaches.

Closed Source Software Development (CSSD) Open Source Software Development (OSSD)

Process Models
Have clear phases and milestones No clear cut milestones
High level view, it is a Liner engineering process Concurrent and parallel process

Interactive-liner development occurs but not on a high
scale [Satzinger et.al]

Very high degree of iterative and oscillative development
because developers regularly keep updating the software
on daily or weekly basis.

Re-iteration may not be possible always Re-iteration is highly possible
It normally follows a spiral or iterative model of
development i.e. software development goes through all
planning, design, implementation etc phases recursively
[Satzinger et.al].

It follows an evolutionary model for development since the
software doesn’t have a final state and keeps on evolving
according to customer needs [Hissam et.al 2001].

Schedule
There is a deadline No Deadlines

Requirements Definition and Specification
Single Requirement Multiple Requirements
CSSD starts with requirements definition and
specification. Here requirements are vague. Project
developers are not aware of the actual requirements. They
need to interview stakeholders to elicit requirements and
then start implementing [Webber 2000, Satzinger et.al].

OSSD starts with a motive of requirements satisfaction.
Requirements are clear, as developer is fully aware of the
requirements [Hissam et.al 2001].

All the user requirements may not be implemented because
of time or budget constraints [Scacchi 2002, Satzinger
et.al].

All user requirements may be implemented, as user is often
the developer [Webber 2000, Hissam et.al 2001].

Users may suggest requirements but they may or may not
get implemented [Satzinger et.al].

User suggests additional features that often get
implemented.

System Architect and project manager decide which
requirements will be incorporated [Satzinger et.al].

Core members of the project decide which requirements to
be incorporated [Raymond 2000, Hissam et.al 2001].

Documentation
Project Plan is documented, and followed There may or may not be a project plan
Once the requirements are clear they are documented
[Satzinger et.al].

Requirements may or may not be documented [Scacchi
2002].

Design and Testing must be documented Design and Testing may not be documented

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

610

Analysis and Design

System Architects and Project Mangers spend a lot of time
in designing the project [Satzinger et.al].

Designing is often merged with implementation. No
separate design phases [Tran 1999, Tran et.al 1999,
Hissam et.al 2001].

This kind of development is more of a solution kind of
development. Developers create solutions for a big
company. It is more like customized development.

This kind of development is more components-based i.e.
plug-n-play type software. Developers create small
programs, which work on a variety of platforms.

User may find one or more proprietary solution for a
particular problem domain.

User is free to choose from a variety of free solution for a
particular problem domain [Hissam et.al 2001].

Software Architecture

Maintaining consistent software architecture is enforced
during the development.

As a software system evolves there is a possibility that its
architecture may change. Maintaining consistent software
architecture is difficult.

During the development, system changes are often made
without considering the overall effect on the systems
architecture. These changes often introduce structural
anomalies between the software's conceptual and the
concrete architecture [Tran et.al 1999].

Minimum concerns, so we need to maintain the software
architecture.

There is rarely a drift between software’s conceptual and
concrete architecture.

OSSD is highly prone to drift because of its highly
collaborative and distributive nature

Developers and managers maintain the software
architecture and prevent it from drifting.

Most OSS developers are involved in OSSD just as a
hobby so they don’t care much about the software’s
architecture. Developers are free to contribute their
developmental effort. This freedom often causes the
architectural drift.

Implementation
The rate of development is comparatively slower that the
open source because the number of developers assigned to
a CSS project can never match a full-scale open source
project like Linux [Satzinger et.al].

Rate of software development is very high because it is a
parallel collaborative development..

Developers productivity may decrease if he is forced to
work on a project which he is not interested in.

Since developers are not forced to work on a particular
project their productivity increases [Hissam et.al 2001].

Here developers work for economic incentives [Webber
2000].

Developers work for peer recognition. People know that
recognition as a good developer is easily montizable
[Webber 2000].

Testing
Users don’t act as beta testers. Users act as bug reporters, beta testers, implementers etc.

Whenever a user finds any bug in the software one may
immediately try to solve it or bring it to the notice of the
community [Webber 2000].

Release and Delivery
Release is not too often. There may be only yearly
releases.

Releases are quite often. Software is released on a daily or
weekly basis [Webber 2000, Hissam et.al 2001].

Product is often released due to marketing pressure and
tight schedule. Such a product may be buggy [Satzinger
et.al].

Product is only released once the developer thinks that it
has reached a functional stage [Webber 2000].

A project that starts is forced to complete. It may also get
infinitely delayed due to improper planning or
management or inability to complete [Satzinger et.al].

May or may not finish depending upon user interest. If
user or the project owner losses interest in the project it
may get delayed, unless that project is taken over by some
one who finds that project interesting [Kuwabara 1999,
Raymond 2000]

Product
Product may soon reach a finalized state once the
documented requirements are implemented [Satzinger
et.al].

Product is never in a finalized state. Requirements emerge
and get implemented. It is an evolutionary process [Hissam
et.al 2001].

Success depends upon following a tight schedule [Godfrey
et.al 1999].

Success of any open source project depends upon the needs
and interest of the community [Godfrey et.al 1999].

OPEN SOURCE VS. CLOSED SOURCE

611

Maintenance

Service packs are needed quite often to repair bugs. Service packs are not needed, as bug reporting and bug
fixing is a common feature in OSSD [Hissam et.al 2001].

Maintenance is major phase in software development.

In OSS most of the time is devoted to active development
and corrective maintenance rather than preventive
maintenance [Tran 1999]. Preventive maintenance is
considered a boring job as it hampers the flow of the
development process.

Productivity, Quality and Cost
Adding more manpower to a project to increase its speed
often delays it as it increases the level of coordination and
complexity.[Kim 2001]

OSSD has its own way of maintaining coordination and
complexity.

Slow and expensive Fast, Better and Cheaper [Scacchi 2002]

Doesn’t work well with speed, quality and cost. At one
time only one factor can be satisfied fully. E.g. if speed is
maintained quality and cost may go up or if cost is to be
maintained quality and speed may go down [Lerner et.al
2000, Satzinger et.al, Scacchi 2002].

All the three factors can be satisfied simultaneously. Cost
is reduced because no one is paid for the job everyone is a
volunteer. Speed is increased because development is
parallel and collaborative in nature. And finally quality is
maintained because the product is released only when the
developer think the product is stable and workable
[Scacchi 2002].

Source Code

Source code is hidden from the user. Source code is open. User can anytime view and modify
the code [Perens 1998].

Hidden source code prevents user from modifying the
software to add new features.

Source code availability helps user to modify the program
to suit individual needs [Perens 1998, Hissam et.al 2001].

Environment
Often we find centralised, single site development takes
place.

Often Decentralised, distributed, multi-site development
takes place.

Development happens in a geographically confined area. Development occurs on the Internet, which facilitates rapid
development [Webber 2000]

Group work and Communication

Inconsistency is easily managed by face to face or weekly
team meeting.

Open source is co-operative and need high level of co-
ordination over the Internet and multi-site. Lack of
coordination among developers results in code forking [
Webber 2000]

Security
Security thru ‘obscurity’ Security thru ‘open source’
Market believes commercial CSS is highly secure because
it is developed by a group of professionals confined to one
geographical area under a strict time schedule. But quite
often this is not the case, hiding information doesn’t make
it secure, it only veils weaknesses [15].

OSS is not market driven it is quality driven. Community
reaction to bug reports is much faster compared to CSS
which makes it easier to fix bugs and make the component
highly secure.

Third party security certification is not possible with CSS

You can ask for a third party security certificate or get your
system scrutinized by a professional security expert for
possible back door entries. [15, Obasanjo 2002 ,
Gutschmidh 2001]

Security cannot be enhanced by modifying the source
code.

The ability to modify source code could be a great
advantage if you want to deploy a highly secure system..

6 CONCLUSION

From the study that we have conducted it comes to
our notice that OSSD is similar to its traditional
counterpart in many aspects, but there are many
areas in which it differs tremendously and these
features make it different from the CSSD. As a
concluding remark we can say open source software
is a competent alternative to CSS.

REFERENCES

Godfrey, M. W., Qiang T, “Evolution in Open Source: A
Case Study” http://plg.uwaterloo.ca/~migod/papers/
icsm00.pdf [Nov 01, 2002]

Gutschmidh, T, 2001, “Thoughts on Java and Open
Source
Security”http://softwaredev.earthweb.com/sdopen/arti
cle/0,,12077_631291,00.html. [Aug 25, 2002]

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

612

http://plg.uwaterloo.ca/~migod/papers/
http://softwaredev.earthweb.com/sdopen/

Hissam S, Weinstock C., Plakosh D., Jayatirtha A.,
“Perspectives on Open Source Software”, Software
Engineering Institute, Pittsburgh, Nov 2001 p49.
http://www.sei.cmu.edu/pub/documents/
01.reports/pdf/01tr019.pdf. [Nov 01, 2002]

Kim J., 2001, “A descriptive process model for open
source software
development”http://sern.ucalgary.ca/students/theses/K
imJohnson/toc.htm [Nov 01, 2002]

Kuwabara K, 1999, “The Bazaar at the Edge of Chaos”
Chap 2: A Brief History of Linux.
http://www.cukezone.com/kk49/ linux/chapter2.html.
[Oct 27, 2002]

Lerner J, Tirole J, 2000“The Simple Economics of Open
Source”, p.11, Available
at:http://www.people.hbs.edu/jlerner/simple.pdf. [Oct
28, 2002]

Malcolm M., 1998 “Profit Motive Splits Open Source
Movement”,
http://content.techweb.com/wire/story/TWB19980824
S0012 [Oct 27, 2002]

Obasanjo D, 2002,“The Myth of Open Source Security
Revisited
v2.0”http://softwaredev.earthweb.com/sdopen/article/
0,,12077_990711,00.html. [Nov 01, 2002]

Perens B, 1998 “The Open Source Definition” Available
at: http://perens.com/Articles OSD.html [Oct 27,
2002]

Raymond, E. R., 2000, “The Cathedral and the Bazaar”.
Avalable at
:http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral- bazaar/ [Oct 27, 2002]

Satzinger, Jackson, Burd, 2000 “System Analysis and
Design in a Changing World”, Thomson Learning.

Scacchi W., 2002, “Is Open Source Software Development
Faster, Better and Cheaper than Software
Engineering?” Available online
http://opensource.ucc.ie/icse2002/Scacchi.pdf
Accessed on: Nov 01, 2002

Tran, J.B., Holt, R.C., 1999, “Forward and Reverse
Architecture Repair” Proc. Of CASCON ’99, pg. 15-
24

Tran, Godfrey, Lee, 1999 “Architectural Repair of Open
Source”,
http://plg.uwaterloo.ca/~migod/papers/iwpc00.pdf
[Nov 01, 2002]

Tran J. B., 1999, “Software Architecture Repair as a
Form of Preventive Maintenance”, Available online:
http://plg.uwate rloo.ca/~j3tran/papers/thesis.html
Accessed on: Nov 01, 2002

Valloppillil, V, 1998, “Open Source Software, A (new?)
Development Methodology” Available
at:http://www.openresources.com/
documents/halloween-1/node4.html. [Oct 27, 2002]

Webber S., 2000 “The Political Economy of Open Source
Software”, California. http://e-
conomy.berkeley.edu/publications/wp/wp140.pdf.
[Jan 7, 2004]

OPEN SOURCE VS. CLOSED SOURCE

613

http://www.sei.cmu.edu/pub/
http://sern.ucalgary.ca/students/theses/
http://softwaredev.earthweb.com/sdopen/article/
http://pere/
http://www.tuxedo/
http://opensource.ucc.ie/icse2002/Scacchi.pdf
http://plg.uwaterloo.ca/~mig
http://plg.uwate/
http://www.openresources.com/
http://e-conomy.berkeley.edu/publications/wp/
http://e-conomy.berkeley.edu/publications/wp/

