
ONTOLOGY  MODELING  TOOL  USING  CONCEPT 
DICTIONARY  AND  INFERENCE 

Yoichi Hiramatsu 
Galaxy Express Corporation 

1-18-16 Hamamatsucho, Minatoku,  
Tokyo 105-0013,  Japan 

Keywords: Ontology Modeling, Editing Tool, Concept Dictionary, EDR, Lexical Dictionary, WordNet, Inference 
Algorithm, Web service, Enterprise System, Common Lisp, I-S-A semantic link, Operation Support System 

Abstract: The usefulness of ontology is strongly dependent on a knowledge representation policy and its maintenance. 
The subject of knowledge representation and modeling tools has been one of the most exciting themes 
among ontology scientists. Some ontology editing tools originated and developed in the field of expert 
systems, and others were designed originally by ontology research groups. Key features of the newly 
implemented tool are: (a) reference to a concept dictionary (EDR, WordNet) to ascertain word semantics, 
and (b) use of an inference algorithm (MOP) provided by Schank et al. Satisfactory results were obtained in 
the application of ontology modeled by the present tool. We will discuss how our tool was constructed and 
describe applications using the tool to achieve solutions for enterprise integration. This work was developed 
as a part of the project entitled “Operation-support system for large-scale system using information 
technology” (Koide et al., 2003) for the Japanese Government IT Program, period 2002-2005. 

1 INTRODUCTION 

One of the design goals of the ontology modeling 
tool is to provide an interactive and graphical facility 
for constructing ontology representation files. A 
graphical user interface (GUI) should work as an 
advisory system wizard providing developer 
guidance during the construction of class hierarchies 
and relationships. This paper deals with one aspect 
of these goals: that is, implementation of a modeling 
tool (named “MOP Editor”) connected to a concept 
dictionary and to an inference algorithm. Despite the 
existence of attractive tools to model ontologies, we 
have persisted in developing the necessary tool for 
our specific requirements. 

The category of modeling tools described herein 
should gain considerable importance for the 
concretization of novel software architecture such as, 
for example, those which model and generate 
business-to-business (B2B) applications supporting 
decentralized and dynamic electronic agents (Alloui 
et al., 2003).   

If we find a way to access an external source of 
reference to determine ontology, we can save time 
during the editing phase. We have decided to use an 
online concept dictionary (EDR, 2003) and a lexical 

dictionary (WordNet, 2003) to refer to for concepts 
of Japanese and English terms. And, if we devise a 
way to interactively test functionality of the 
“in-construction” ontology during the construction 
phase, the ontology quality is improved significantly 
in comparison with that obtained without interactive 
tests. Thus, we have chosen an inference engine 
known as MOP (Memory Organization Package) 
algorithm introduced by Schank et al. (Riesbeck et 
al., 1989; Schank et al., 1994) in order to execute 
ontology evaluation tests. MOP is a kind of 
frame-based knowledge formalism that holds class 
hierarchy, in which concepts and instances are 
represented by mop objects. 

The effectiveness of MOP Editor and the 
constructed ontology were evaluated against 
objective design criteria using three kinds of Web 
services: message generation, synonym retrieval, 
and ontology sharing. Web services are distributed 
around the system and work collaboratively. 

2 ONTOLOGY AND DOMAIN 
FEATURES 

Ontology is a set of conceptual building blocks of 

225
Hiramatsu Y. (2004).
ONTOLOGY MODELING TOOL USING CONCEPT DICTIONARY AND INFERENCE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 225-230
DOI: 10.5220/0002603002250230
Copyright c© SciTePress



knowledge in a determined application area. It 
provides a domain of discourse for knowledge 
sharing among computers. Ontology enables a 
number of machines to share their knowledge: for 
example, for information retrieval systems. 
Concretely, ontology enumerates concepts, attributes 
of concepts, relationships among concepts, and 
constraints on these relationships, thereby defining 
the knowledge reference structure of the considered 
domain.  

Our domain is ground support equipments for 
rocket launching at a rocket launch facility at 
Tanegashima Space Center in Japan. Entry terms of 
the domain are the names of the following objects: 
fluid-pump, air-compressor, pipe, junction, 
storage-device, electrical-cable, fuel-tank, 
oxygen-tank, valve, actuator, fuel, oxygen, vaporizer, 
sensor, pressure-controller, etc. 

Abstract concepts that correspond to the entry 
terms are arranged in such a way as to compose a 
class hierarchy in which superclass and class are 
connected by an I-S-A semantic link. For example, 
“pressure-controller is-a-kind-of controller”. 
Ontology can be accurately represented by the class 
hierarchy of abstract concepts plus actual instances. 
Instances are tagged names of real objects, such as 
sensor-AA, controller-101, controller-102, and so on. 
Instances are attached to ending points of the leaf of 
the class hierarchy. In general, the number of 
instances is estimated to be one order greater than 
the number of classes. In our present work, we have 
selected a quantity of over a hundred for classes and 
over a thousand for instances.   

3 CURRENT ONTOLOGY 
MODELING TECNIQUES 

Free software tools and commercial products for 
ontology modeling have evolved during the last few 
years. Some examples are Ontolingua, Protégé2000, 
OntoEdit and Hozo. These tools accept entry terms 
and create an I-S-A semantic link for classes, 
generating text-type files of class hierarchy. Most of 
them are equipped with plug-in features for 
importing other ontologies written in XML, RDF, 
DAML, OWL, etc. 

Ontolingua (Farquhar et al., 1996; Ontolingua, 
2003) is a set of tools and services that supports the 
process of achieving consensus on common shared 
ontologies by geographically distributed groups. 
Ontolingua makes use of the world-wide web to 
enable wide access and provide developers with the 
ability to publish, browse, create, and edit ontologies 
stored on an ontology server.  

On the other hand, the Protégé system (Gennari 

et al., 2002; Noy et al., 2001; Noy and Musen, 2003) 
is an environment for building knowledge-based 
systems, mainly in the field of domain ontology. 
Protégé runs on a variety of platforms, supports 
customized user interface extensions, incorporates 
the Open Knowledge Base Connectivity (OKBC) 
knowledge model, and interacts with storage formats 
such as relational database, XML and RDF.  

Similarly, OntoEdit (Sure et al., 2002; OntoEdit, 
2003; Maier et al., 2003) is another ontology editing 
environment that supports the development and 
maintenance of ontologies by graphical means. 
OntoEdit is built on top of an internal ontology 
model, enabling therefore as much neutral modeling  
as possible for concepts, relations and constraints. It 
is equipped with a GUI menu entry (in which 
developers can choose namespace) and a back-end 
inference engine.  

Another interesting tool that we have 
investigated is Hozo (Kozaki et al., 2002; Kozaki et 
al., 2000). This has different features than 
Ontolingua, Protégé or OntoEdit. Hozo is based on 
an ontology theory of role-concept in which the tool 
can distinguish concepts dependent on particular 
contexts from the so-called basic concept, and can 
manage the correspondence between a wholeness 
concept and a relatioship concept. 

The newly implemented MOP Editor differs 
from the modeling tools described above in the 
following points: (a) it is coded in Common Lisp 
(CL) and Common Lisp Object System (CLOS), 
thereby allowing capability for dynamic 
maintenance, (b) it makes reference to the concept 
dictionary to help developers to build as general an 
ontological model as possible, and (c) it supports the 
inference engine that will be used to check the 
appropriateness of the built ontology.     

4  IMPLEMENTED MODELING 
TOOL 

4.1 Configuration of Tool 

Figure 1 is a process view of the MOP Editor. The 
GUI facility was implemented using the Integrated 
Development Environment (IDE-CG) of the CL. 
The MOP algorithm was developed using a set of 
functions of CLOS (Koide and Kitamura, 2002). 
Although there are a lot of respectable programming 
languages available, we think that CL is, in a sense, 
the mother of all languages and is highly efficient. 
The main reason for this statement is that CL 
includes a complete theory of computation by 
treating code and data within a single and uniform 
system. 

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

226



Link characterization among concepts is based 
on the I-S-A (is-a-kind-of) semantic link, as adopted 
in EDR and WordNet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Class Hierarchy 

The class hierarchy mentioned here is a 
classification hierarchy. Concepts are connected by 
an is-a-kind-of relationship. This relationship can be 
seen as the following: if X is a kind of Y, then X is a 
specialization of Y, while Y is a generalization of X. 
Therefore, our ontological representation is based on 
the classification hierarchy. 

4.3 Data Organization 

MOP Editor organizes the developer’s data in a form 
of project unit (file named *.mprj). Each project 
contains all the information that developers have 
typed in, that is; the ontology file (named *.mont) 
and the instances file (named *.mins). The ontology 
file and instance file are composed of Lisp 
S-expressions for mop objects and mop instances, 
respectively. The following are examples of 
ontology files and instance files: 
 
<ontology file> 
(defmop  mop-object (superclass  superclass …) 

  (role1  filler1)  
  (role2  filler2) 

(role3  filler3) 
(role4  filler4) 
 …)  

 
 
 
<instance file> 
(definstance  mop-instance (superclass) 
   (has-a  mop)  

 (part-of  mop) 
 …)  

 

The schematic shown in Figure 2 clarifies the 
input and output files of MOP Editor. Projects file 
*.mprj can be loaded dynamically by developers 
during ontology maintenance services, without any 
necessity for system shutdown. 

Fig

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Utilization of Concept Dictionary  

MOP Editor utilizes two kinds of online dictionaries 
as a reference source to build the top, domain and 
task ontologies. The flowchart in Figure 3 shows 
how developers use the parser software and 
dictionaries to add new concepts. Developers can 
switch between the two dictionaries according to 
their needs when looking for new concepts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EDR 

EDR is a
Japanese words
language proc
organized in th
feature of ED
interconnected 

In this work
of EDR: (a) a
Concept Clas
Headconcept D
Word Dictionar

ure 1 : Process  View  of  MOP Editor

Web Service
(server)

Ontology Server
(front-end)

Web Service
(client)

Socket

Web Service

MOP
Editor

E D R WordNet

(defmop
… )

(definstance
… )

Ontology Server
(back-end)

Developer

Saving data

Loading data

reference

Figure 2 : Schematic  of  Input / Output

entry.txt

*.mprj
(*.mont  ,  *.mins)

Input  file
Output  file

（loop applied for existent projects）

*.mprj
(*.mont  ,  *.mins)

MOP
Editor

Figure 1: Process view of MOP Editor 

Figure 2: Schematic of Input/Output 

Technical 
Documentation Parser

Stop

Class hierarchy

Start

Edit slots

*.mprj
*.mont
*.mins

“class” & 
“instance”Dictionary of Concept:

Text file

reference

reference
E D R

WordNet

 

ONTOLOGY MODELING TOOL USING CONCEPT DICTIONARY AND INFERENCE
Figure 3: Flowchart
 machine tractable dictionary of 
 used in the research field of natural 
essing. The words resource is 
e form of data records. The main 
R is that its sub-dictionaries are 
via concepts using concept ID tags. 
, we have used three sub-dictionaries 
 Japanese Word Dictionary, (b) a 

sification Dictionary, and (c) a 
ictionary. The role of the Japanese 
y is to describe the correspondence 

Figure 3 : Flowchart

227



between Japanese words and the concepts 
represented by these words, and also to provide 
grammatical information for the word when used 
with a given meaning. Each record is composed of 
the following fields: record number, headword, 
invariable portion of the headword and pair of 
adjacent attributes, Kana notation, pronunciation, 
syntactic category (noun, verb and particle), 
syntactic tree, conjugational information, surface 
case information, aspect information, word function 
information, concept ID, English headconcept, 
Japanese headconcept, English concept explanation, 
Japanese concept explanation, usage, frequency, and 
management information. 

Thus, the purpose of the Concept Classification 
Dictionary and the Headconcept Dictionary is to 
provide concepts for the Japanese Word Dictionary. 
The first contains a classification of concepts having 
a super-sub relation, and the data record is composed 
of the following fields: record number, concept ID of 
the superconcept, concept ID of the subconcept, and 
management information. The second one gives a 
description of each concept in words, and the record 
is composed of the following fields: record number, 
concept ID, English headconcept, Japanese 
headconcept, English concept explanation, Japanese 
concept explanation, and management information. 
Both dictionaries contain about 400,000 concepts. 

MOP Editor uses a concept ID to connect 
concepts among these sub-dictionaries. The ontology 
developer would display the superclass and class of 
concepts when he is looking for a relationship that 
can better represent the subsumption relationship (or 
I-S-A semantic link) in the treated domain. 
 
WordNet 

WordNet is an online lexical resource of English 
language used by linguistic scientists. WordNet 
consists of lexicographer files that organize nouns, 
verbs, adjectives and adverbs into groups of 
synonyms called synsets (synonym sets) and 
relationships between this synset and other synsets.   

Nouns and verbs are organized into a hierarchy 
based on the hypernymy/hyponymy and 
holonymy/meronymy relationships between synsets. 
Here, hypernymy and hyponymy mean, respectively, 
superordinate and subordinate relations. For 
example, Y is a hypernym of X, if X is a (kind of) Y. 
Holonym is the name of the whole of which the 
meronym names a part. For example, Y is a holonym 
of X, if X is a part of Y. WordNet shows how each 
word is linked to others, as for example when the 
developer types in the word valve, he gets not only 
the synonyms definition, but the hypernyms (a valve 
is a kind of what?), meronyms (what are the parts of 
a valve?), and more. 

4.5 Behavior of Inference Engine 

MOP is a frame-based formalism based on the 
Schank’s theory about how human memory is 
organized, and attempts to remind computers the 
way people are reminded.  

In MOP algorithm, we use a global symbol named 
mop to represent a CLOS object. The mop object can 
have multiple superclasses and a set of attributes 
represented by slots, such as (role1  filler1), (role2  
filler2), (role3  filler3), ... The role is a slot-name 
and the filler is a slot-value. The filler takes values 
of the type string, integer, double-float and own mop 
object. The class hierarchy is a representation of 
abstract concepts using mop objects. When 
developers create a new mop object, MOP Editor 
evaluates this mop object in order to avoid eventual 
definition errors of the mop object. MOP Editor still 
checks whether the attributes represented by the pair 
of role and filler are consistent inside the ontology 
file and instances file. 

A new mop object is created if all the fillers have 
been approved through this error checking 
evaluation test. Note that if the filler already exists, 
then the previous defined filler is used for the 
evaluation test. On the other hand, if the filler does 
not exist, then the evaluation test uses the filler of 
the present mop object. Therefore, MOP algorithm 
differs from the frame-based system in the following 
points: (a) the newly created filler behaves as a mop 
object, (b) the filler is also structured hierarchically, 
(c) mop hierarchy is flexible, i.e., the knowledge 
representation becomes more and more detailed 
every time new mop objects are added to the class 
hierarchy. MOP uses slots to place the new instance 
at an appropriate location inside the class hierarchy. 
Figure 4 shows a view of the implemented MOP 
Editor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 : A  View  of  MOP EditorFigure 4: A view of MOP Editor 

 
 

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

228



5 EVALUATION OF TOOL AND 
ONTOLOGY 

Functionality of MOP Editor and appropriateness of 
the constructed ontology were evaluated using three 
kinds of Web services: message generation service, 
synonym retrieval service, and ontology sharing 
service. Web service is a software system designed 
to support interoperable machine-to-machine 
interaction in a distributed and collaborative 
environment, equipped with an interface described 
in a machine-processable format under the SOAP 
protocol. 

5.1 Message Generation Service 

Message generation is one of the simplest Web 
services. The Web client of a message generation 
service queries for generation of messages 
comprehensive to humans by sending a set of 
keywords in direction to the ontology server. The 
ontology server uses an adequate template and sends 
a reply message to the client. The role of the 
ontology is to provide a reference base of 
information retrieval to compose grammatically 
correct messages that better fit the client queries.  

For example, for a given set of keywords such 
as: part = controller, device = LNG drain control 
valve and event = abnormal closing, the generated 
message would be “Because of malfunction of the 
controller at LNG drain control valve, abnormal 
closing was detected”.  

This message is sent back to the Web client. As 
shown in Figure 5a and Figure 5b, we confirmed 
that our ontology is capable of generating messages 
comprehensive to humans for several contextual 
situations in the range of computer simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(defmop Context (Root) ())
(defmop Cause-Candidate (Context) ())
(defmop Device-Part-Abnormal-Cause-Candidate (Cause-Candidate)

((device Device)
(part Part)
(event Abnormal-Event)
(phrase ‘(Because of the malfunction of the (part) at 

(device), (event) is possible.))))

Generated Message
“Because of the malfunction of the controller at 
LNG drain control valve, abnormal closing is possible.”

(slots->mop ‘((device 

5.2 Synonym Retrieval Service 

Synonym retrieval is a Web service for information 
retrieval. The Web client queries for a synonym that 
has the same or similar meaning as a given word; for 
example, for liquid-oxygen the synonym would be 
oxidant, for temperature-sensor the synonym is 
thermocouple or thermometer, and so on. 
Furthermore, in specialized fields engineers use 
different technical terms to indicate identical or 
equivalent physical objects, such as 
fuel-feeding-system and launching-tower, or even to 
differentiate one particular physical hazard from 
another more general one, such as fatigue-crack and 
crack. Since operational tasks for rocket launching 
comprise a large-scale system embracing hundred of 
engineers of different divisions and companies, a 
Web-searching service for adequate synonyms gains 
significant importance during diagnostics.  

5.3 Ontology Sharing Service 

Use of a fixed source of reference such as EDR or 
WordNet makes the built ontology transferable to 
other database servers distributed on the network. 
Thus, sharing of ontology becomes possible because 
I-S-A link and hypernymy/hyponymy or 
holonymy/meronymy relationships can be 
considered “invariable” during a long period of time.  

The Web client of an ontology sharing service 
queries for a copy of one part or a whole ontology 
stored in the ontology server. A copy of class 
hierarchy will be shared with other data servers. In 
this work, we have tried a sharing service between 
an ontology server and a so-called large-scale 
multimedia filing data server. A sharing service is 
used for a rapid keyword-based search of 
multimedia data (documentation, drawings, logs, 
sound, pictures and movies) during operational tasks 
and diagnostics at the rocket launch facility.  

FCV-5201)
Controller)
Close-Abnormal))

(part 
(event 

‘(Context) nil)

This input automatically 
creates an instance of 
Device-Part-Abnormal-
Cause-Candidate. 
Then, generate message…

Figure 5 b : Message Generation

Input Data
：Cause-Candidate
：

：
：

(defmop Device-Role (Root) ())
(defmop Part (Device-Role) ())
(defmop (Part) 
((phrase ‘(controller))))

(defmop Event (Root) ())
(defmop Abnormal-Event (Event) ())
(defmop (Abnormal-Event)

((phrase ‘(abnormal closing))))

(defmop Object (Root) ())
(defmop Device (Object) ())
(defmop Valve (Device) ())
(defmop Flow-Control-Valve (Valve) ())
(definstance          (Flow-Control-Valve)
((phrase ‘(LNG drain control valve))))

Fi n

context
device
part
event       

Controller
Close-Abnormal

FCV-5201

Controller

Close-Abnormal

FCV-5201

Figure 5b: Message Generation 

gure 5 a : Message GeneratioFigure 5a: Message Generation 

ONTOLOGY MODELING TOOL USING CONCEPT DICTIONARY AND INFERENCE

229



6 SUMMARY AND FUTURE 
WORK 

MOP Editor demonstrated ability in constructing 
ontology applicable to Web services for message 
generation, synonym retrieval, and ontology sharing. 
We have confirmed throughout our computer 
simulation that the tool can be used for graphically 
modeling class hierarchy and semantic links. 
Furthermore, we have assured that ontological 
models provided by EDR and WordNet work 
relatively well for the presented Web services. 

Future work is needed to enhance GUI facility 
and MOP functionality to incorporate coming 
themes such as text extraction from any sources, task 
ontology, ontology distinguishing, integration of 
different ontologies, and plug-in for database 
connectivity. 

ACKNOWLEDGEMENT 
This work has been supported in part by the Ministry 
of Education, Culture, Sports and Technology 
(MEXT) of Japan. The authors are grateful to 
Professor Dr. R. Mizoguchi and Research Associate 
Dr. K. Kozaki of Osaka University for providing 
helpful comments on ontology methodology. Many 
thanks to the technical group of Franz Incorporated 
for valuable advice on Allegro’s IDE-CG. Many 
thanks also to all the colleagues of Galaxy Express 
Corporation for their enthusiasm and contributions 
in developing the project.  

REFERENCES 
Alloui, I., Megzari, K., Oquendo, F., 2003. Modeling and  
generating business-to-business applications using an 

architecture description language-based approach. In 
ICEIS-2003, 5th International Conference on 
Enterprise Information Systems. ICEIS Press. 

EDR (2003) 
http://www.jsa.co.jp/EDR/  
Communications Research Laboratory. Web site. 
Farquhar, A., Fikes, R., Rice, J., 1996. The Ontolingua 

Server: A Tool for Collaborative Ontology 
Construction. Knowledge Systems Laboratory, 
Stanford University.  

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso,  
W. E., Crubezy, M., Eriksson, H., Noy, N. F., Tu, S. W., 

2002. The evolution of Protégé: an environment for 
knowledge-based systems development. In 
International Journal of Human-Computer 
Interaction. 

Koide, S., Kitamura, Y., 2002. MOP3: Memory  
Organization Package on Meta Object Protocol. In 

ILC-2002, International Lisp Conference, San 

Francisco, USA. 
Koide, S., Nishio, H., Kitamura, Y., Gofuku, A.,  
Mizoguchi, R., 2003. Operation-support system for  
large-scale system using information technology. In 

ICEIS-2003, 5th International Conference on 
Enterprise Information Systems. ICEIS Press. 

Kozaki, K., Kitamura, Y., Ikeda, M., Mizoguchi, R., 2000.  
Development of an environment for building ontologies 

which is based on a fundamental consideration of 
“relationship” and “role”. In PKAW2000, Proceedings 
of the Sixth Pacific Knowledge Acquisition Workshop. 

Kozaki, K., Kitamura, Y., Ikeda, M., Mizoguchi, R., 2002.  
Hozo: an environment for building/using ontologies based 

on a fundamental consideration of role and 
relationship. In EKAW2002, 13th International 
Conference Knowledge Engineering and Knowledge 
Management. 

Maier, A., Schnurr, H., Sure, Y., 2003. Ontology-Based  
Information Integration in the Automotive Industry. In 

ISWC-2003, 2nd International Semantic Web 
Conference. 

Noy, N. F. and McGuinness, D. L., 2001. Ontology  
Development 101: a guide to creating your first ontology. 

In SMI technical report (SMI-2001-0880), Stanford 
University. 

Noy, N. F. and Musen, M. A., 2003. Ontology versioning  
as an element of an ontology-management framework. In 

IEEE Intelligent Systems. 
Riesbeck , C. K. , Schank, R. C., 1989. Inside case-based  
reasoning. Lawrence Erlbaum Associates, Publishers. 

New Jersey. 
Schank, R. C., Kass, A., Riesbeck, C. K., 1994. Inside  
case-based explanation. Lawrence Erlbaum Associates, 

Publishers. New Jersey. 
Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R.,  
Wenke, D., 2002. OntoEdit: collaborative ontology 

engineering for the semantic Web. In ISWC-2002, 1st 
International Semantic Web Conference. 

OntoEdit (2003) 
http://www.ontoprise.de 
Ontoprise GmbH. Web site. 
Ontolingua (2003) 
    http://www-ksl-svc.stanford.edu/ 
    http://ontolingua.stanford.edu/ 
    Knowledge Systems Laboratory, Stanford University. 

Web site. 
WordNet (2003) 
http://www.cogsci.princeton.edu/~wn/ 
ftp://ftp.cogsci.princeton.edu 
Cognitive Science Laboratory at Princeton University. 

Web site. 

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

230


