
VIRTUAL ORGANIZATIONS AND DATABASE ACCESS – A CASE
STUDY

Mikko Pitkanen1, Marko Niinimaki2, John White2, and Tapio Niemi3
1 Helsinki University of Technology, Finland

2 Helsinki Institute of Physics at CERN, Geneva, Switzerland
3 University of Tampere, Finland

Keywords: Grid computing, distributed databases, virtual organizations

Abstract: This paper presents a case study of using virtual organization technologies in database access. A virtual orga-
nization (VO) is a collection of people in the same administrative domain. A user can belong to many virtual
organizations and have a different role (user, client, administrator,..) in each of them. An authorization of a
user to different services within a VO is based on the user’s identity and a service called a Virtual Organization
Membership Service (VOMS) that maps these identities with roles.
The user’s identity can be established in two ways. If the user communicates with the service using his
web browser, the user’s certificate must be included in the browser. Another possibility is to use a proxy
certificate. There, in the proxy creation process, the program that writes the proxy adds the user’s proxy
certificate information about his participation in different VO’s and his role in each of them.
In order to demonstrate using these VO proxy certificates, we have extended the functionality of Spitfire, a
relational database front end. This involves assigning the user a database role (read/write/update) based on the
VO information in his certificate. There is also a graphical user interface for creating the mappings between
VO roles and database access roles.

1 INTRODUCTION

The recent interest and subsequent research in the
Grid computing field has given rise to the concept of
“virtual organizations”. A virtual organization (VO)
is a collection of people in some administrative do-
main. The user can be a part of any number of in-
ternal groups in their organization and have multiple
roles in many organizations (Alfieri et al., 2003). A
user is authorized to perform tasks on a computing
Grid according to their VO affiliation and their role(s)
within the VO.

The authorization process becomes more complex
when the number of users and the number of possible
roles of the users in the service increases. As services
are usually distributed, a centralized service manag-
ing the authorization data is needed. This service
is called a Virtual Organization Membership Service
(VOMS) (Alfieri et al., 2003). The VOMS service is
a front-end to a database where the information about
the users is kept. The server maintains lists of groups,
roles and capabilities that belong to each user. The
VOMS is used to bind authorization information to a
users identity (Alfieri et al., 2003).

When a VOMS service is used, the user in-

vokes voms-proxy-init program (or equivalent)
to contact the VOMS server. This program produces
a proxy certificate containing the authorization in-
formation from VOMS service (Alfieri et al., 2003).
When the user enters a service presenting his VOMS
certificate, the service can find out the user’s autho-
rization information from the certificate. This re-
moves the responsibility to maintain up-to-date infor-
mation in every server.

The information about a user’s VO and their role in
it can be easily utilized in the context of distributed
databases being accessed by a European DataGrid
(EDG) product, Spitfire (Project Spitfire, 2001). In a
typical case, if a Spitfire administrator knows a user’s
VO (e.g., an academic collaboration ACAVO) and
their role within this ACAVO (say, an administrator),
they can assume which databases the user should be
able to access or modify. Using Spitfire, along with
the edg-java-security package and a graphical user in-
terface we can easily add a rule concerning the access
rights of the user. This greatly simplifies the task of
the database administrators, since they do not need to
create a database access and grant different rights to
each new person in the VO.

Foster, Kesselmann and Tuecke emphasize the role

514
Pitkanen M., Niinimaki M., White J. and Niemi T. (2004).
VIRTUAL ORGANIZATIONS AND DATABASE ACCESS – A CASE STUDY.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 514-517
DOI: 10.5220/0002602305140517
Copyright c© SciTePress

of virtual organizations in resource sharing in (Fos-
ter et al., 2001), and mention database access in
one of their Grid scenarios. The OgsaDai consor-
tium (OgsaDai, 2002) has defined an architecture for
Grid database accesses and released an implementa-
tion of it. However, as far as we know, the European
DataGrid project has been the first to design and im-
plement a VO-based access management and imple-
mentation, that is described in this paper.

2 SPITFIRE AND EDG JAVA
SECURITY

Spitfire (Project Spitfire, 2001) is a project of Work
Package 2 within the European Data Grid Project. It
offers a Java servlet that accepts database requests us-
ing HTTP/HTTPS protocols and displays the results
in XML. The EDG’s authentication and authorization
software, edg-java-security, analyzes the user’s rights
to execute operations based on the user certificate pre-
sented to the system.

In edg-java-security, the authentication is based on
a hand-shaking protocol in Secure Sockets Layer and
Transport Layer Security. The server and client send
each other their X509-format certificates and mes-
sages encrypted by their private keys that are related
to the public keys included in the X509 certificates.
This way the server and the client authenticate them-
selves as owners of their respective certificates (Secu-
rity Coordination Group, 2003).

When a proxy certificate is used as a credential, the
user sends their certificate and the proxy certificate to
the server (Foster and Kesselman, 1997). The proxy
is signed by the user and the user’s certificate is used
to verify the proxy’s signature. This way the chain
of trust is delegated to the proxy. The proxy certifi-
cate can be used by the user for access to various ser-
vices, as it carries the user’s signature as identifica-
tion. However, the only apparent feature of the proxy
is its issuer, i.e. the user’s certificate subject like
“O=Grid, O=NorduGrid, OU=hip.fi, CN=Joe User”.
Each Grid service needs to decide independently the
access rights of each certificate owner. This can be
improved by introducing extensions to the certificate;
in our case a VO extension that states the user’s VOs
and their role in each of them.

3 AUTHORISATION AND
SECURITY IN RELATIONAL
DATABASES

Authorisation and security are essential in client-
server database systems. In this section we discuss

briefly how they are implemented in SQL databases.
We follow the book by Elmastri and Navathe (Elmasri
and Navathe, 1994).

In general, two methods are used in database access
control: discretionary and mandatory access control.
In discretionary access control different privileges for
database objects (e.g. tables = relations, columns =

attributes) are granted to the users while in mandatory
access control the data and the users are classified in
different security classes. A user, in order to view
the data, must have the same or higher security class
than the data in question. In the following discussion,
we will refer to discretionary access control meth-
ods since almost all relational database systems use
it while the mandatory control method is used only in
some special systems. Moreover, the SQL standards
support only discretionary access control.

In SQL, privileges can be assigned to the account
(user) level or the database object (relation) level. At
the account level the privileges define what operations
a particular user can perform in general, and in the
database object level the privileges specify the oper-
ations a user can perform on the object (e.g. select,
modify). In order to perform an operation, the user
must have both account level and the object level priv-
ileges.

The basic privileges for relations (tables) are select,
modify, and reference. The select privilege allows the
user to retrieve data from the relation and is defined
only on the relation level; views can be used to allow
only some attributes to be retrieved. The modify priv-
ilege allows the user to modify the data and can be
defined in a more detailed manner as update, delete,
and insert privileges. The modify privilege is also de-
fined on the relation level, and the update and insert
privileges can also be given on the attribute (column)
level. The reference privilege allows the user to define
references to a relation, e.g foreign key constraints.

SQL has grant and revoke commands for defining
privileges. With the grant option, a privilege can be
given to the user so that he can grant it further. SQL
also supports roles. The role is “a set of privileges”
that can be assigned to the user. This makes admin-
istration easier since several privileges do not need to
grant separately to the user.

4 VOMS

Essentially the Virtual Oraganization Membership
System (VOMS) presents an extension to a user’s
X509 proxy certificate, that includes their VO mem-
bership information. When a VOMS-proxy is gen-
erated with the voms-proxy-init command is
used, the VOMS server is contacted to request a
VOMS-extended proxy certificate that follows the

VIRTUAL ORGANIZATIONS AND DATABASE ACCESS - A CASE STUDY

515

standard X509v3 (Housley et al., 1999) certificate for-
mat. All the standard fields of the proxy certificate
are used to store the user’s authentication information.
The X509v3 extension (1.3.6.1.4.1.8005.100.100.1)
part is used to include authorization information in the
user’s proxy certificate. The authorization informa-
tion is stored in triplets of GROUP, ROLE and CAP
(special capability rules, like disk space assignments).

When a user wishes to use a grid service, they
pass their credential (in this case the VOMS-extended
proxy certificate) to the service interface, for example,
Spitfire. The grid service then extracts the user’s au-
thorization information from the extension part. The
extensions part of the proxy certificate also includes
the VOMS signature and validity period of the role
mappings. The VOMS signature is used to to verify
that a trusted VOMS service has attached the autho-
rization information to the user’s proxy certificate.

The actual information that the VOMS extension
contains can be configured by the VO’s administra-
tion, by using VOMS’es user interface.

In the future, it is foreseen to use Attribute Certifi-
cates (Farrell and Housley, 2002) to store the autho-
rization information instead of extending the proxy
certificate. This will not change the way information
is used in a service since the same information is ex-
tracted from a different credential passed by a user.

5 COMBINING VOMS AND
SPITFIRE USER
AUTHORIZATION
MECHANISMS

In the Spitfire service, database roles are divided into
categories of “read”, “write”, “update”, and “create”
by default. A user that has been assigned the read
role is allowed to browse the database in question;
similarly, “write” role owner can insert data, “update”
role owner can modify data, and “create” role owner
can create new tables. Normally, of course, a user can
have many roles; for instance in the case of a database
administrator all of the above.

A policy is a collection of mappings of roles
and users. Policies are designed by EDG’s Trust-
Manager software components. For instance, pol-
icy “default” can be based on a regular expression
mapping that allows roles “read”, “write”, “update”,
and “create” to a person whose certificate subject is
“O=Grid, O=NorduGrid, OU=hip.fi, CN=Joe User”,
and “read” to persons whose certificate subject con-
tains “O=Grid, O=NorduGrid, OU=hip.fi”.

Spitfire can access any relational database with
a Java connector, but the default implementation is
based on MySQL (MySQL AB, 2001). With MySQL,

the roles are applied on database-wide basis 1. Differ-
ent VO’s can have their databases accessed through a
single Spitfire service and the access configuration is
managed with standard Java database access methods.

6 USE CASE: ACCESSING
SPITFIRE WITH A CLIENT
PROGRAM

Spitfire offers standalone Java and c++ clients for ac-
cessing the service. A use case is presented to illus-
trate database access with VOMS certificates.

First the user requests a VOMS certificate with
edg-voms-proxy-init command. The certifi-
cate is written and stored to a file “/tmp/x509up uid”
(where id is the user’s identity number in the com-
puter). When the client accesses a service, the VOMS
(proxy) certificate is sent to the service. The service
is then able to extract the authorization information
from the certificate.

The service finds out which VO the user belongs to.
Further, the role of the user in his VO is also extracted
from the certificate. With this information the service
is able to define the user’s access rights. This removes
the need from a service to know specific user ids and
their mapping to database access rights.

In the case of successful authorization, the result of
the user’s query is returned to the client. An extract
of sample client code is shown in Figure 1, where the
programmer requests an XML output of query “select
all columns from table repcat in database GRID such
that the column LFN contains cms.cern.ch”. The se-
curity and authentication features are completely in-
visible to the programmer.

There, we notice that the user requests policy
“voms-based” and and uses his proxy certificate
named “/tmp/x509up u6385”.

7 CONCLUSIONS

In this paper, we have presented a design and an im-
plementation of virtual organizations and database ac-
cess. The main benefits of the design are that it sep-
arates authentication and role authorization in man-
ageable modules; and that here is no need to enter
user id - password -pairs because of certificates. Us-
ing VOMS adds the benefit of easy administration;
the VOMS admin can define global policies how to

1MySQL’s “database” rougly corresponds to Oracle’s
tablespace. Many database vendors, including MySQL and
Oracle, implement at least “per database” and “per table”
access control.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

516

public final class SimpleQuery {
public static void main (String args[]) throws Exception {

String endpoint = null; endpoint = args[0];
SpitfireBaseServiceLocator sfLocator = new SpitfireBaseServiceLocator();
SpitfireBase sfBase = sfLocator.getSpitfireBase(new java.net.URL(endpoint));
try {

System.out.println("The result as XML\n");
String c = "LFN like \"%cms.cern.ch%\"";
System.out.println(sfBase.simpleSelectAllAsXML("GRID","repcat",c, 0));

} catch (Exception x) {
System.out.println(" ERROR: " + x.getMessage());

}
}

}

java -classpath [...]
-DgridProxyFile=/tmp/x509up_u6385
-Dedg-security.policy=voms-based
SimpleQuery https://localhost:8443/Spitfire/services/SpitfireBase

The result as XML
<?xml version="1.0" encoding="UTF-8"?>
<ROWSET><ROW num="1"><LFN>lfn://cms.cern.ch/dataset/file001</LFN>
<PFN>pfn://cms005.cern.ch/data/hh01/file001</PFN></ROW>
[..]
<ROW num="5"><LFN>lfn://cms.cern.ch/dataset/file005</LFN>
<PFN>pfn://cms005.cern.ch/data/hh01/file005</PFN></ROW></ROWSET>

Figure 1: Sample code, a command to invoke it, and its output.

access database services within a VO and thus ease
local administration procedures.

As discussed in Section 5, the system can only
be accessed using specific client programs, not for
instance a web browser. However, we are in pro-
cess of incorporating VOMS functionality in Grid-
Blocks Agent software (Mobile Analyzer, see (Karp-
pinen et al., 2003)) that enables simultaneous queries
to distributed databases and has a graphical user inter-
face.

EDG software is open source, and avail-
able at http://datagrid.in2p3.fr. Grid-
Blocks is open source software available at
http://gridblocks.sourceforge.net.

REFERENCES

Alfieri, R., Cecchini, R., Ciashini, V., dell’Agnello, L.,
Frohner, A., Lorentey, K., and Spataro, F. (2003).
VOMS an authorization system for virtual organiza-
tions. In Proceedings of the 1st European Across
Grids Conference - Santiago de Compostela, Spain,
13-14 February 2003.

Elmasri, R. and Navathe, S. B. (1994). Fundamentals of
database systems (2nd ed). Benjamin / Cummings.

Farrell, S. and Housley, R. (2002). Rfc 3281, an internet
attribute certificate profile for authorization. Available
on http://www.ietf.org/rfc/rfc3281.txt.

Foster, I. and Kesselman, C. (1997). Globus: A metacom-
puting infrastructure toolkit. International Journal of
Supercomputer Applications, 11(2).

Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the Grid: Enabling scalable virtual organi-
zations. International Journal of Supercomputer Ap-
plications, 15(3).

Housley, R., Ford, W., Polk, W., and Solo, D. (1999).
Rfc 2459, internet x.509 public key infrastruc-
ture certificate and crl profile. Available on
http://www.ietf.org/rfc/rfc2459.txt.

Karppinen, J., Niemi, T., and Niinimaki, M. (2003). Mo-
bile analyzer - new concept for next generation of
distributed computing. The 3rd IEEE/ACM Inter-
national Symposium on Cluster Computing and the
Grid, (CCGrid 2003), Japan, May 2003. Available on
http://ccgrid2003.apgrid.org/online posters.

MySQL AB (2001). Mysql. Available on:
http://www.mysql.org.

OgsaDai (2002). Open grid services architecture
data access and integration. Available on:
http://www.ogsadai.org.

Project Spitfire (2001). Project Spitfire.
Available on: http://spitfire.web.cern.ch.

Security Coordination Group (2003). Datagrid security de-
sign. Technical report, European DataGrid Project.

VIRTUAL ORGANIZATIONS AND DATABASE ACCESS - A CASE STUDY

517

