
A MIDDLEWARE FOR THE MANAGEMENT OF LARGE
UTILITIES PLANTS

S. Cavalieri, F. D’Urso, C. Floridia, A.Rossettini
University of Catania, Faculty of Engineering, Department of Computer and Telecommunications Engineering, Viale

A.Doria, 6 - 95125, Catania (ITALY)

Keywords: Middleware, Gas and water distribution utilities, Wastewater treatment systems, XML, Web Services,
SCADA, GIS, DSS.

Abstract: The paper presents the main features of the European project Mobicossum IST 1999-57455, still running.
The project is a CRAFT one approved inside the Fifth Framework Programme. It aims to define a
middleware offering services for the management of large plants, in the field of gas and water distribution
and wastewater treatment systems. In the paper, the main features of the project will be explained, focusing
on the description of the implementation of the core of the middleware, called Generalised Interface.

1 INTRODUCTION

The Mobicossum project, IST 1999-57455, is a
CRAFT project (V European Framework
Programme) involving medium and small European
enterprises working in the field of gas and water
distribution and wastewater treatment. One of the
RTD performers inside the project is the Department
of Computer and Telecommunications Engineering
at the University of Catania (Italy), to which the
authors of the paper belong. The main objective of
the Mobicossum project is to design and implement
software technologies that allow the use of wireless
mobile device as client of IT systems to control and
manage large utilities plants. The main feature of the
proposed technology is the definition of a common
interface between mobile applications, running in
mobile devices like palm PCs, and data stored in
SCADA (Supervisory Control and Data
Acquisition), GIS (Geographic Information System)
and DSS (Decision Support System) applications.
Common interface is not linked to a specific
application, product or vendor. Further, platform
independency is guaranteed. The common interface
provides for several services useful in utilities
management, like localisation, user authorisation,
and business logic. The research focuses on
satisfying requirements present in utilities for water
and gas distribution and wastewater treatment
systems, the three interest areas of the partners
involved in the project. It must be clear that the
results obtained can be easily transferred to other

kind of utilities, e.g. electricity distribution. The
common interface between mobile devices and
applications like SCADA, GIS and DSS is realised
defining a Middleware.

The paper will focus on the description of the
Middleware from the implementation point of view,
highlighting the software technologies adopted. In
particular the description will be limited to the core
of the Middleware called Generalised Interface.

2 MAIN FEATURES OF
MOBICOSSUM PROJECT

Mobicossum aims to define a Middleware conceived
to offer specialised services in the field of water/gas
distribution and wastewater treatment systems.
Services are mainly dedicated to mobile users (i.e.
users connected to mobile devices, like mobile
phones and PalmPCs). Middleware is placed
between (mobile) users and the applications
providing for information coming from water/gas
distribution and wastewater treatment systems.
These applications are SCADA, GIS and DSS, three
kinds of applications featuring very different
services and usage. Mobicossum is made up by the
following subsystems: Presentation Manager (PM),
Central Services (CS), Logical View (LV), Data
Management (DM) and the Generalised Interface
(GI).

99
Cavalieri S., D’Urso F., Floridia C. and Rossettini A. (2004).
A MIDDLEWARE FOR THE MANAGEMENT OF LARGE UTILITIES PLANTS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 99-104
DOI: 10.5220/0002601200990104
Copyright c© SciTePress

The Presentation Management is responsible to
generate the pages presented to the users as a
function of the user (name), the location of the user,
the used presentation device (Pocket PC, WAP
phone, etc.), the application status, etc.

The Central Services provide for different
features. One of this is User Access Management, as
access from not authorised users must be avoided,
providing for secure access logging. Furthermore,
when a particular user accesses the system by a
secure logging, it is required that the middleware
identifies its profile (e.g. technician, manager, and so
on). In this way, the Mobicossum system may be
automatically aware of the data needed by the user,
avoiding the need to explicitly request the data
desired. Other Central Services are those concerning
Localisation. Localisation of each mobile worker is
a very important requirement in large plant, like
those related to water/gas distribution and
wastewater treatment systems. Localisation is very
important, for example, concerning alarm problems;
a warning system, being aware of the location of
each mobile worker, would allow mobile workers
nearest to the warning area to be alarmed.
Localisation may be used also for data selection
based on the position of the user inside or outside
the plant; only the data relevant to the geographical
area nearest to the user are sent to him, avoiding
transmission of useless information.

The Logical View provides for high-level
services. It contains the business logic of
Mobicossum application. The LV must be seen as a
library of macro-level functions able to perform
complex transformation on the real data available at
the SCADA, GIS and DSS level. The type and
complexity of the transformation depends on the
kind of user calling the function.

The Data Management is in charge of providing
data brokerage. It collects data from the different
application connected to Mobicossum. The data can
be retrieved in function of logical names or in
function of a position specification.

The Generalised Interface is the core of the
Middleware. This subsystem directly interfaces to
the SCADA, GIS and DSS applications maintaining
the real data needed by the Mobicossum clients. The
main aim of the GI is that to offer a common
interface to every SCADA, GIS and DSS
application. This mainly means the definition of a
unique set of services to access data maintained in
SCADA, GIS and DSS applications and unique way
to access these data. Decoupling with the real
SCADA, GIS and DSS application is performed in
this way. Services offered by the GI may be
accessed directly by a user, but can also be used by
the other components of Mobicossum Middleware,
when they need to access the real data.

In order to understand the exchange of
information between the components of
Mobicossum, Figure 1 summarises its internal
architecture. As can be seen, the GI is placed at the
lowest level in order to provide for basic accesses to
the SCADA, GIS and DSS applications. Exchange
of information between Mobicossum components
may occur from the top towards the bottom of the
architecture (and vice versa) and inside each sub
layer (between Data Management, Logical View and
Central Services). A direct exchange of information
between Presentation Management and the GI may
be possible. Further, direct exchange of information
between Mobicossum client and the GI is foreseen.
In any case the access to the real data maintained to
SCADA, GIS and DSS applications has no sense in
Mobicossum, as all the query to these applications
must be realised through the Generalised Interface.

Figure 1: Mobicossum Middleware Architecture.

3 GENERALISED INTERFACE

Client applications interact with the Generalised
Interface, which is in charge of receiving incoming
messages containing requests for a particular
service, parsing the messages, and dispatching the
request to the appropriate method of a specific
application such as a SCADA system, a GIS or DSS.
When the service returns a response, the GI is also
responsible for packaging the response into a
message and sending back to the client. Definition of
client applications must be clearly stated.
Mobicossum project mainly focuses on definition of
services (in the area of water/gas distribution and
wastewater treatment systems) mainly available
from mobile devices. In particular very simple
mobile devices are considered, like mobile phones
and PalmPCs. So client applications must be strictly

GIS DSS SCADA

Generalised Interface

Data
Management

Mobicossum
Middleware Presentation

Management

Central
Service

Logical
View

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

100

considered as very "simple" applications running on
the mobile devices above mentioned. A browser
running on a PalmPC must be considered an
example of a very "simple" application running on a
mobile device. However, the description of the
implementation of the GI, contained in the following
sections, will point out that extension (outside the
aim of Mobicossum project) of client applications to
more "intelligent" applications (let think, for
instance, to a SCADA applications which has to
collect information from other SCADA applications
through Mobicossum infrastructure) is quite trivial.

Definition of the GI has been made taking into
account two main requirements of
control/monitoring problems in the area of water/gas
distribution and wastewater treatment systems. The
first concerns the Definition of Common Services.
SCADA, GIS and DSS applications offer specialised
services, whose meaning and scope is common to
the most part of the products available in the market.
But, their implementation is strictly linked to the
particular SCADA, GIS and DSS application.
Considering for example a SCADA application, it's
always be possible to find groups of services
conceived to retrieve and update information from/to
field devices, but the names, the relevant syntax, the
number of parameters, the error codes returned by
the services are totally different changing from one
SCADA application to the other. The main aim in
the definition of the Generalised Interface is that to
offer to client applications (including the other
Mobicossum modules, seen as client for the GI) a
unique set of services for each SCADA, GIS and
DSS applications. Each service defined in the GI
must be easily mapped into the real corresponding
service offered by the particular SCADA, GIS and
DSS application. The definition of the services for
the GI has been based (in Mobicossum project) on a
study carried on during the first months of the
project. It pointed out the user requirements, in the
sense of services real needed by users in the field of
water/gas distribution and wastewater treatment
systems.

The other requirement taken into account in the
development of the GI is related to the Definition of
a Common Access to the Services. One of the
problems strongly felt when accessing to different
SCADA, GIS and DSS applications, is linked to the
different mechanisms used to achieve the access.
Different solutions, like COM, DCOM, OPC
currently exist and development of different
accesses for different application is often required.
In particular, development of a client application
often means including different access schema
according to the SCADA, GIS, DSS application the
client application needs to access. Accessing to a
new SCADA, GIS, DSS application implies to add

new accessing schema for the specific application.
For this reason, definition of Middleware and in
particular definition of the GI has been performed
with the aim of making platform and language
independent the way of access to industrial
applications by the client. The paper mainly focuses
on this last aspect, i.e. the definition, inside
Mobicossum project, of a common access to the
services provided for by the GI.

4 GI ARCHITECTURE

The need of a common access mechanism to the
services available at the SCADA, GIS and DSS level
has led to the definition of an internal architecture of
the GI featuring a unique access mechanism to all
the applications below the GI, integrated into the
Mobicossum environment.

Current literature presents several approaches for
definition of communications between distributed
applications, but that based on Web Services
technology features a lot of advantages, due to the
platform- and language-independence, and to the
low configuration complexity and costs. For this
reason, development of the GI was mainly based on
Web Service technology. In particular it was
assumed that the GI exports the own services using
the Web Service technologies (Web Services, 2002).
These services are those defined trying to generalise
the services generally offered by SCADA, GIS and
DSS applications available on the market. Due to the
use of Web Service technology, these services have
been defined in terms of Web Methods. Web Service
technology has been used also for the exchange of
information between GI and the SCADA, GIS and
DSS applications. It is assumed that the only
requirement for the integration of existing
applications into Mobicossum environment is that
these applications export their own functionalities
through Web Services in order to establish the data
exchange with Mobicossum Middleware.

XML/SOAP based communications has been
assumed to send/receive request/response to/from
the Generalised Interface and to realise the exchange
of information between the Generalised Interface
and the Web Services related to each application.

Figure 2 shows the integration between GI and
the SCADA, GIS and DSS applications through the
Web Services.

A MIDDLEWARE FOR THE MANAGEMENT OF LARGE UTILITIES PLANTS

101

4.1 Integration with Existing
Applications

As said before, the main hypothesis on the basis of
Mobicossum Middleware is that integration of
existing application is realised through Web Service-
based technology. This means that each SCADA,
GIS and DSS application has to provide for Web
Services in order to be integrated into Mobicossum
framework. Mobicossum Middleware, and in
particular the GI, has to acquire a complete know-
how about the applications below it and their
available Web Services, including all the Web
Methods offered. This is realised through the
definition of a Web Service Specification for each
application. A Web Service specification is an XML-
Schema file (XML Schema, 2003) describing both
Web Methods offered by Web Services related to
each SCADA, GIS and DSS application, and the
format of the XML/SOAP messages to be
exchanged with these Web Services. According to
the Web Service-based philosophy, also the
Generalised Interface has to provide for a
Generalised Interface Specification, describing the
generalised services offered by the GI, using
XML-Schema.

Figure 2: Integration between GI and SCADA, GIS and
DSS Applications

On the basis of the Generalised Interface
Specification and the Web Service Specification
related to application registered inside Mobicossum,
particular mapping files must be defined. In
particular, two mapping files are needed for each
application as they will be used by a particular
component of the GI (the Mapper) to map the
request/response written according to Generalised
Interface Specification, into request/response written
according to Web Service specification of the
specific application, as will be explained in the

following. It was assumed to realise the mapping of
XML/SOAP document using XSLT language. So,
suitable Mapping files written in XSLT language,
are available to realise the translation, as already
said before.

4.2 Main Components of the GI

The GI is made up by the following internal
components: Parser, Mapper and Dispatcher, as
shown by Figure 3. The Parser receives the
XML\SOAP request coming from the client of the
GI and checks if the XML document is valid. For the
document validation, the Parser verifies that the
XML/SOAP message is well formed and has been
prepared according to an XML-Schema describing
the correct structure of the incoming requests. The
XML-Schema is the Generalised Interface
Specification, as said before. If the request doesn’t
match, an error message will be returned; on the
other hand, if the document is valid, the request will
be sent to the Mapper module. For each response
coming from the application, the Parser will receive
a document from the Mapper component (described
in the following). In this case the Parser will check
that the format of the document has been prepared
according to the XML-Schema for the response,
passing the valid document to the client.

Figure 3: Generalised Interface Internal Architecture

The Mapper performs the translation of
XML/SOAP request, sent to GI, into the format
recognised by destination application. As said
before, this mapping has been realised on the basis
of suitable Mapping files written in XSLT language
(XSLT, 2003). When the Mapper receives a request,
written according to Generalised Interface
Specification, it maps the request in the XML/SOAP
request format of the destination application, using a
Request Map file, that is the map file (in XSLT
language) related to the specific application. The
document resulting by mapping represents the
format of the request that must be delivered to the
specified destination application. Once the Mapper
has processed a request, the request is passed to the

DSS GIS SCADA

Web Services Web Services

Web Services

Web Services

Generalised Interface

Dispatcher

Parser

Mapper

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

102

Dispatcher. The same process is made for the
response, coming from the application. To map the
response, coming from application, the Mapper uses
another map file (Response Map file) that allows
translating the message wrote according to the
format of the specific application in the format
defined by GI specification.

For each request forwarded by the Mapper, the
Dispatcher makes the following steps. It finds the
correct HTTP address of Web Service relevant to the
requested application and it establishes the HTTP
connection with web service. Then, it sends request
and receives response. Finally, it handles the
cookies, as explained in the following.

In principle, each instance of SCADA, GIS and
DSS application may feature more than one Web
Services, each of these exporting different Web
Methods relevant to the same application. It's clear
that client cannot know the address of each Web
Service, but it can know the application instance.
This information is specified by the client in a
particular field, the ApplicationID, contained in a
field of the XML/SOAP request sent to the GI.
Moreover the client obviously can specify the
method (expressed in terms of the Generalised
Interface Specification) to be invoked. The service
name is contained in the XML/SOAP request sent to
the GI, too. Identification of the right Web Service
address is performed by the Dispatcher on the basis
of the ApplicationID and the GI service name
requested by the client, using a database local to the
Dispatcher. This database contains for each
ApplicationID and for each GI Web Method, the
corresponding Web Service Address. When the
Dispatcher finds the right Web Service Address, it
opens an HTTP connection to the correct web
service. Then it performs the remote procedure call
to the suitable web method and waits for the
response. When the response arrives, the Dispatcher
closes the connection and delivers the response to
the Mapper.

A particular problem concerning the
communication between Dispatcher and the Web
Services of each application instance is that the
HTTP is a stateless protocol. Each request to a Web
Service is independent, and the application retains
no memory of a client’s past requests. To overcome
this limitation, management of the sessions state has
been realised using HTTP cookies.

The idea behind HTTP cookies is that when the
Dispatcher sends a request, the Web Service sends
back a response with an HTTP Set-Cookie header
that has a name/value pair in it. For all subsequent
requests to the same Web Service, the Dispatcher
sends the name/value pair in an HTTP Cookie
header. The Web Service then can use the value to
associate the subsequent requests with the initial

request. The Web Service automatically processes
this cookie and uses it to restore the values saved in
the memory for this particular client. For each
service requested by a client, the application will
preserve the information stored for the client's
session. This session information is stored in
memory on the Web Service of the application. The
client is provided with a unique cookie that the
application uses to match client requests with the
information specific to that client's session. A
session state ends when the client does not make any
HTTP requests to the application for a specified
time-out period. When the Dispatcher sends the first
request for a client, it receives the cookie from Web
Service and stores it in a local database. For all the
subsequent requests coming from the same client,
the Dispatcher gets the cookie related to the client.
Since the GI connects to several applications, it is
necessary to keep the connection state for each client
and for each application requested by the client.

4.3 Management of Multiple
Connections

GI must be able to handle concurrent multiple
connections concerning different requests by the
same client or by different clients. For each request,
it's required that an instance of the GI modules
(Parser, Mapper, Dispatcher) is created. The instance
must be deleted when the request has been satisfied.

5 GI IMPLEMENTATION

The architecture of the GI described in the previous
section has been implemented in such a way to be
not linked to a specific platform, but it has been
realised using freeware libraries.

The implementation was realised on Windows
2000 Operating System. This is only an
implementation choice, not existing constraints on
the use of this OS, as it will be pointed out in the
next.

An analysis of the state of the art about free
software/libraries useful to manipulate XML files
for the parser, mapper and dispatcher has been done,
during the first stage of the project. It highlighted the
advantages in using DOM libraries to realise parsing
of XML documents and Dispatcher functionalities,
and XSLT engine to realise the Mapper.

DOM presents an easy processed standardised
interpretation of an XML document to applications
and scripts. Different free implementations of the
DOM exist in different languages. We have used the
Microsoft XML Core Services (MSXML), realised
as DLL implementing the parser DOM in a COM
component (MSXML, 2003).

A MIDDLEWARE FOR THE MANAGEMENT OF LARGE UTILITIES PLANTS

103

In order to implement the Mapper, use of the
XSLT engine has been considered. The XSLT
engine can be an external component, a library or a
class. Different free implementations of this engine
exist, among which the MSXML library used in the
implementation (MSXML, 2003).

Dispatcher has been implemented as class. It is
instanced after the Mapper has performed the SOAP
request transformation. The Dispatcher exports one
method that implements the routine to handle the
communication with the Web Service of each
specific SCADA, GIS and DSS application. Also for
this implementation we have used the MSXML
library; in particular we have used the
ServerXMLHTTP interface. It provides methods and
properties that enable establishment of an HTTP
connection between files or objects on different Web
servers (MSXML, 2003). The ServerXMLHTTP
object is used to handle the HTTP protocol, such as
to post SOAP documents to a remote Web Service
(HTTP POST), to read and to insert cookie in the
Header HTTP, read the response status code, etc
(MSXML, 2003).

5.1 Software Requirements
Implementation based on the use of DOM and
XSLT Engine is featured by very few constraints on
the software requirement. DOM and XSLT Engine
are not linked to a specific Operating System, as it's
possible to find libraries for Windows and for Unix
platform. Management of Web Services can be
realised by IIS or by Apache for example, but there
is no constraints on this item. From the
implementation point of view, the GI has been
developed assuming to use: Windows 2000
platform, Visual Studio .NET development
environment. This has implied the following
choices: a DOM library compliant with Windows
2000 and Visual Studio .NET (one of the libraries
available on the web is the Microsoft MSXML
library, that has been used in the implementation)
and IIS for developing and support the Web
Services. If the solution based on DOM and XSLT
Engine isn't linked to a specific platform, on the
other hand it requires particular tools (Editor and
Mapper), and in same cases they are not free. Used
tools in this implementation were: XML Spy5 Editor
and TIBCO XMLTransform 1.1.0 (this last in order
to produce map file).

5.2 Management of Multiple
Connections

The implementation of the GI carried out is able to
receive and process many requests at the same time.
The Web Services exporting the functionalities of

the GI are published in Internet through a web
server. We have chose Internet Information Services
(IIS) as web server. When a client of the GI calls a
GI method, it sends an HTTP/SOAP request to the
web server that publishes the web method. The web
server receives the request and allocates a thread to
process it. For each request, a thread is allocated, so
the web server doesn’t block and can accept other
coming requests. In order to implement the web
services, we have chosen the ASP.NET technology
offered by the .NET Framework. In this case the
web server allocates a thread of the .NET Run-Time
to process the request. The thread loads and executes
the class implementing the web service. In the
execution of the web service, instances of the objects
processing the SOAP request (Parser, Mapper and
Dispatcher) are created. The Dispatcher sends the
mapped request to the destination application web
service. After, it waits for the web service response.
When the response comes back, the Dispatcher
forwards it to the client. At this point, the request of
the client is completely satisfied, so the thread is
destroyed together the instances of Parser, Mapper
and Dispatcher.

6 CONCLUSIONS
The paper has presented an overview on the main
features of the CRAFT IST 1999-57455 project,
highlighting the internal architecture and
implementation of the GI, which is the component in
charge to offer to clients a set of services not linked
to a specific product and implementation. The
choice of a platform/language technology allowed
overcoming the main limit of the current
SCADA/GIS/DSS applications currently available,
making vertical and horizontal integration of those
applications possible. Vertical integration means that
a generic client application is able to access any
information maintained in a particular SCADA, GIS
and/or DSS application without be linked to the
access mechanism and syntax of the particular
application. Horizontal integration means that a
client application is allowed to acquire information
coming from different SCADA/GIS and DSS
applications.

REFERENCES

Web Service, 2002, http://www.w3.org/2002/ws/
XML-Schema, 2003, http://www.w3.org/XML/Schema
XSLT, 2003, http://www.w3.org/Style/XSL/
MSXML,2003,http://msdn.microsoft.com/library/default.a

sp?url=/library/en-us/xmlsdk/htm/sdk_intro_6g53.asp

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

104

