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Abstract: The object-oriented design methodologies have focused on methods, tools and representations to build 
classes taking advantage of inheritance and encapsulation properties. Modelling of the interaction among 
the objects often does not go beyond the method declarations stage until the programming phase.  Efforts to 
include object constraints in the object-oriented design to embody the behavioural correctness have not 
reached the level assertions play in understanding the correctness of the traditional imperative programs. 
The paper describes use of a model checker to establish correctness of an object-oriented design. 

1 INTRODUCTION 

The program execution fundamentals of object-
oriented systems are rooted in the imperative 
programming paradigm. The need for invariants and 
execution stages (Warmer, 1999; Dijkstra, 1976) 
remains important in establishing the correctness 
and other properties of the object-oriented programs 
and systems. The dominant developments in the 
object-oriented domain have focused on class 
construction; however, a design is not ready just 
because each class has been designed inheriting 
behaviour and code from appropriate super-classes. 
We need to also be sure that the class objects will 
interact with each other correctly.  

A methodology exclusively focused on the object 
and class interfaces does not address some basic but 
important design needs: How do we know that all 
object classes have been defined? How do we know 
that all methods of interest have been found? How 
do we know that all behavioural details of interest 
have been captured in the specifications? 
Inconsistency in the specifications is another global 
property that escapes the confines of a single class 
interface. We need a methodology that can consider 
properties of individual classes as well as the 
properties of a group of classes and their objects. 

Imperative languages use procedural abstraction 
as the central design methodology for understanding 
and comprehending software and development 
processes. Invariants and predicates (Dijkstra, 1976) 
are used to relate the points in the static text of a 
program with the (expected) state that would exist 

when the correct program reaches those points 
during the execution.  

More recently, Java – Java 1.4 onwards – has 
incorporated the traditional imperative language 
style assertions. Thus, through post-conditions 
programmers are able to express some, but not all, 
aspects of the contracts that object methods have to 
the objects invoking the methods. However, 
emphasis away from the functional and procedural 
paradigms makes it difficult to associate locations in 
the static text of an object-oriented program with the 
execution stages. It is not convenient to write 
assertions defining the system states at various 
points during the program execution. The Object 
Constraint Language, OCL (Warmer, 1999), has 
somewhat limited success in expressing constraints 
on the values (states) in programs. 

In this paper, we suggest the use of model 
checking tools as a way to express and verify 
properties that encompass multiple objects and their 
classes. Specifically, we use Labelled Transition 
System (LTS) by Magee and Kramer (Magee, 1999) 
as the verification tool. The tool models a concurrent 
system of objects as a composition of Finite State 
Process (FSP).  

A model is an abstract specification of the 
system. Each object is represented as a concurrent 
component. The invariant properties of the object-
oriented model can be expressed as the safety 
properties over the LTS description. A deadlock or a 
liveness concern in the LTS model has interpretation 
in the object-oriented domain as underscoring an 
issue that has remained unaddressed. 
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Figure 1: Initial finite state process for a lift 
passenger from a text description. 

Section 2 describes a software development 
process, the LTS specification language and its 
processing. In section 3, we give flavour of the kinds 
of outputs one receives from the LTS analyser. 
Section 4 presents some concluding remarks. 

2 SOFTWARE DEVELOPMENT  

We follow validation led software development 
process (Lakos, 2002). In brief, the object-oriented 
software development begins with a text description 
of the system. The objects and object classes are 
discerned from the text. For each class, some data 
members may become obvious at this point. Class 
hierarchies and other inter-class relationships are 
also represented explicitly to take advantage of the 
standard object-oriented modelling methodologies. 
To extract consistent and complete specifications, 
the methodology advocates the use of object 
lifecycle models.  

For each significant object class, the text 
description provides an initial description of the 
object’s lifecycle. For example, verbs provide clues 
to the existence of various states. The nature of these 
verbs may suggest various forms of transitions 
between the states of the system.  

Text descriptions are notorious for their 
ambiguity and inconsistency. At the same time, 
much of the description is generally left 
unexpressed. One does not expect the initial 
lifecycle models of the object classes drawn from 
the text to be perfect models. A validation led 
process can be used to iteratively develop the 
lifecycles to their final refined levels.  

In each iterative cycle of the validation led 
development, the lifecycles are matched against each 
other to identify inconsistencies and incompleteness. 
Each identified lacuna requires the lifecycles to be 
revised to correct the concern. The reported 
methodology, however, relied on a manual analysis 

of the lifecycles to identify the lacunae. A tool to 
perform this analysis is a necessary step to improve 
the reliability and effectiveness of the methodology.  

We address this need by using a model checker 
to identify the mismatches in the object lifecycle 
specifications. The emerging specification being 
formal delivers another potential benefit in the form 
of automating the task of program generation. This 
paper, however, does not pursue this avenue. 

The examples used in this paper are based on the 
lift system as described in (Lakos, 2002). Figure 1 
shows the lifecycle of a lift passenger as it becomes 
evident from the text description of the lift system. 
As the validation led process progresses, the 
specification gets developed. For example, a 
passenger arriving at the ground floor or the top 
floor of the building will have a lifecycle somewhat 
different from the lifecycles of those arriving at the 
other floors.  

2.1 Labelled Transition System 

Using Labelled Transition System (LTS) (Magee, 
1999) we can model the lifecycles of the entities as 
Finite State Processes (FSP). The associated system 
analyser (LTSA) can analyse the processes for 
progress and safety violations. In this section, we 
give a brief flavour of FSP descriptions.  

A Finite State Process consists of a sequence of 
actions. As an action occurs the system changes its 
state over a finite set. It is often helpful to define a 
finite process in terms of other finite processes. For 
example, process PASSENGER below models a lift 
passenger (see Stanton 2002 for further details) 

 
const UP = 0  
const DOWN = 1 
set DIR = UP..DOWN 
PASSENGER = { 
 call_at_ground_level -> 
                WAITING_FOR_LIFT[1] |  
 call_at_top_floor ->   
          WAITING_FOR_LIFT[MAX_FLR] |   
 call_at_floor[f:2..MAX_FLR-1][d:DIR]  
             -> WAITING_FOR_LIFT[f]  
} 
 

In this model, a passenger can follow one of 
three alternative sequences of actions based on the 
floor from which he calls the lift. In each alternative, 
an action of calling the lift is followed by a wait 
(process) for the lift. The passenger waits on the 
floor from which he called the lift.  
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MODEL CHECKING AN OBJECT-ORIENTED DESIGN
specified as a guard and therefore manifests as 

Composition: 
LP = p.1:PASSENGER || LIFT(btnUp,btnDown,dptCount) ||btnUp.1:BUTTON ||  
   btnUp.2:BUTTON || btnDown.2:BUTTON || btnDown.3:BUTTON || dptCount.1:BUTTON ||   
   dptCount.2:BUTTON || dptCount.3:BUTTON 
State Space: 
 22 * 882 * 3 * 3 * 3 * 3 * 3 * 3 * 3 = 2 ** 29 
Analysing... 
Depth 25 -- States: 217 Transitions: 445 Memory used: 4482K 
Trace to DEADLOCK: 
 p.1.arrival.1 // p.1 arrives a at level 1 of the building 
 p.1.passenger.1 // wants to ride the lift from level 1   
 p.1.call.1.1 // calls the lift 
 delay.1 // waits – this lift is right there! 
 door_is_open_i.1.1 // Lift door opens 
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0  
 btnUp.1.seek_button.1 // Lift checks: the up button at floor 1 shows 1 person is waiting 
 btnUp.1.off // Lift turns the first floor up button off 
 p.1.enter_lift // Passenger p.1 may board the lift 
 p.1.entered_lift.1 // p.1 enters lift 
 p.1.press_dest.1 // p.1 wants to go to floor 1 – same floor 
 pause 
 door_is_closed.1.1 // Lift door closes p.1 is inside 
 dptCount.1.seek_button.1 // Lift determines that it needs to go to floor 1 
 door_is_open_i.1.1 // Lift opens the door 
 dptCount.1.seek_button.1 // Anyone getting down here? 
 p.1.destination_reached.1 // p.1 is to be let off here 
 p.1.left_lift.1 // p.1 leaves 
 p.1.arrival.1 // p.1 is back on the level 1 
 p.1.passenger.1 // wants to ride the lift from level 1. Again! 
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0 
 btnUp.1.seek_button.0 // Lift checks: the up button at floor 1 shows 0 persons waiting 
 btnDown.1.seek_button.1 // Lift checks: the down button at floor 1 shows 1 person is waiting 

                                                      // btnDown.1 is defined by LIFT(btnUp,btnDown,dptCount)   
 btnDown.1.off // Lift turns the first floor down button off 

Analysed in: 180ms 
 
Figure 2: LTSA analysis report indicating a sequence of actions leading to a deadlock in a FSP model for a lift 

system.  The comments have been added to provide interpretation for the readers of this paper. 
.2 LTS Analyser 

he LTS analyser (LTSA) can verify a given model 
or two kinds of errors. A progress violation occurs 
hen the system reaches a state from which it can 
ot guarantee a future occurrence of any action from 
 set of actions. For example, a progress violation 
ould have occurred if we can not assert, at all 
stances, that the lift will visit the ground floor 

gain at some time in the future. 
A safety property is a sequence of, not 

ecessarily consecutive, actions that represent an 
cceptable behaviour. Any violation denotes an 
rror. For example, a safety requirement may insist 
at each door open action is followed by a door 
lose action before the lift moves.  

Indeed, there is some leeway in modelling 
ertain conditions: a safety requirement can be 

progress violation rather than as a safety violation.   
A safety check involves exercising all possible 

sequences of the actions to ensure that no safety 
violation occurs. Similarly to ensure the absence of 
progress violation, the analyser checks all possible 
sequences of actions to find a sequence that does not 
guarantee a future occurrence of a desired action. 
Each safety or progress violation detected by the 
tool is reported by LTSA as an action sequence 
leading to the error state.  

3 EXPERIENCES  

This section reports our experiences in the use of the 
model checker for validation led development 
specifications of the lift problem. Our study 
(Stanton, 2002) was focused on the issues related to 
the movements of a lift in a multi-floor building. At 
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various points in its lifecycle, the lift model invokes 
algorithm WALK to determine its next action.  Some 
points on the lift lifecycle at which the algorithm is 
invoked are: (1) when the lift door closes; (2) when 
the lift approaches the next floor level; and (3) by an 
idle lift when an on-floor button is pressed to call the 
lift.  

Table 1: State space volume for the modelled lift system and its growth with the floors and simultaneous users. 

Number of floors in the modelled building Number of  simultaneous 
passengers in the model  3 5 7 10 

Reachable states 1267 5067 12987 35952 
Potential state space 1024 ~1033 ~1040 ~1050

 
1 

Number of transitions 1327 5267 13407 36852 
Reachable states 56664 697580 3580800 

Potential state space ~1041 ~1058 ~1073
 
3 

Number of transitions 68388 812408 4060332 
Reachable states 2966788 

Potential state space ~1057
 

5 
Number of transitions 4337180 

 

 

Initially a rather rudimentary WALK algorithm 
was derived from the text and coded in the FSP 
model. The LTS analyser was then repeatedly used 
to report incompleteness and inconsistency errors in 
the model. As the errors were reported the WALK 
specifications were corrected. Figure 2 depicts an 
annotated LTSA report – we have added annotations 
to help the reader understand it. 

The reader would notice that the description does 
not fit with the typical configuration of a real lift 
system. For example, there are buttons on the 
ground floor to call the lift to go up as well as to go 
down. Likewise, a passenger wishing to travel to the 
same floor may call the lift for either direction. Their 
presence is simply an indication of the still evolving 
state of the FSP model used in the figure. The 
example model is not the final model.  

Table 1 provides an indication of the effort 
required to model-check the finite state process 
(FSP) model of the lift. These provide some 
interesting insights into the traditional testing-based 
software design and development methodologies.  

A naïve black-box testing (Perry, 1995) would 
tend to show growth in the required number of test 
cases in proportion to the potential state-space size. 
The white-box testing (Perry, 1995) takes advantage 
of the implementation and design information. Thus, 
it will follow the growth trend shown as reachable 
state space and/or as the number of transitions. In 
both cases, it is clear that a pragmatic testing effort 
can cover only a small fraction of the test cases 
needed for a complete check. Besides being more 
comprehensive a model-checker catches the errors in 
an earlier phase than the testing – a cherished goal of 
every software engineer. 

4 CONCLUSION 

The model checking, notwithstanding its tedium, is a 
useful and effective tool in developing high-quality 
error-free software. Model checkers, such as LTSA, 
contribute to this process in many ways:  
• The formal FSP descriptions that a model 

checker requires is directly associated with the 
objects in the system specifications.  

• The FSP description of the objects is formal and 
is capable of interpretative execution. 

• The verification process employed by a model 
checker is like a simultaneous execution of all 
animations – analysis provides an effective and 
efficient mean for identifying potential errors.  

• The formal specifications can be automatically 
transformed into programs. 

REFERENCES 

Dijkstra, E.W., 1976. A Discipline of Programming, 
Prentice-Hall. Englewood Cliffs, NJ. 

Lakos, C.A. & V.M. Malhotra, 2002. Validation Led 
Development of Software Specifications, International 
Journal of Modelling and Simulation, 22(1), 57-74. 

Magee, J. & J. Kramer, 1999. Concurrency: State Models 
& Java Programs, John Wiley & Sons, Chichester. 
England. 

Perry, W., 1995.  Effective Methods for Software Testing, 
John Wiley & Sons, NY. 

Stanton, S.C., 2002. Validation and Verification of 
Software Design using Finite State Process (Honours 
thesis), School of Computing, University of Tasmania, 
Hobart, Australia. 

Warmer J. & A. Kleppe, 1999. The Object Constraint 
Language – Precise Modeling with UML, Addison 
Wesley Longman Inc., Reading,, Ma. 

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

608


