
TRANSACTION DESIGN FOR DATABASES WITH HIGH
PERFORMANCE AND AVAILABILITY

Lars Frank
Department of Informatics, Copenhagen Business School, Howitzvej 60, DK-2000 Frederiksberg, Denmark.

Keywords: ACID properties, database availability, short duration locks, multi-databases, client/server technology, ERP
systems and E-commerce.

Abstract: When many concurrent transactions like ERP and E-commerce orders want to update the same
stock records, long duration locking may reduce the availability of the locked data. Therefore,
transactions are often designed without analyzing the consequences of loosing the traditional
ACID (Atomicity, Consistency, Isolation and Durability) properties. In this paper, we will analyze
how low isolation levels, optimistic concurrency control, short duration locks, and
countermeasures against isolation anomalies can be used to design transactions for databases with
high performance and availability. Long duration locks are defined as locks that are held until a
transaction has been committed, i.e. the data of a record is locked from the first read to the last
update of any data used by the transaction. This will decrease the availability of locked data for
concurrent transactions, and, therefore, optimistic concurrency control and low isolation levels are
often used. However, in systems with relatively many updates like ERP-systems and E-commerce
systems, low isolation levels cannot solve the availability problem as all update locks must be
exclusive. In such situations, we will recommend the use of short duration locks. Short duration
locks are local locks that are released as soon as possible, i.e. data will for example not be locked
across a dialog with the user. Normally, databases where only short duration locks are used do not
have the traditional ACID properties as at least the isolation property is missing when locks are not
hold across a dialog with the user. The problems caused by the missing ACID properties may be
managed by using approximated ACID properties, i.e. from an application point of view the
system should function as if all the traditional ACID properties had been implemented.

1 INTRODUCTION

In this paper, we will analyze how concurrency
methods like optimistic concurrency control and low
isolation levels can be integrated with short duration
locks and countermeasures against the absence of
the traditional ACID properties in order to design
transactions for databases with high performance
and availability. Table 1 gives an overview of the
properties of the methods used to increase
concurrency. Updating database transactions
consists often of several subtransactions. For
example, when a user is going to update some data

in a remote database, the user normally starts a
query that reads the data, which is going to be
updated. Next, the user makes corrections to the data
in user’s PC or workstation. Finally, the corrections
are sent to the remote database location where the
data is updated. If short duration locks are used in
the transaction described above, all the
subtransactions will have local ACID properties, but
the global transaction consisting of all the
subtransactions will not have the traditional ACID
properties. In this paper, we will use extended
transaction models where only approximated ACID
properties are implemented.

222
Frank L. (2004).
TRANSACTION DESIGN FOR DATABASES WITH HIGH PERFORMANCE AND AVAILABILITY.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 222-226
DOI: 10.5220/0002598702220226
Copyright c© SciTePress

Table 1: Evaluation overview of methods to increase concurrency.
Evaluation criteria Optimistic

concurrency control
Low isolation levels Short duration locks Counter-

measures
Deadlock Eliminates deadlock,

but restarts will occur
in case of conflicts

Can eliminate read-
write conflicts

Can eliminate both
read-write and write-
write conflicts

Special
countermeasures
against deadlock
may be
implemented

Hotspots Hotspots will cause
many restarts

Can eliminate read-
write conflicts in
hotspots

Can diminish locking
time in hotspots

Special counter-
measures may be
designed against
hotspot problems

The atomicity
property

No problems No problems Extended transaction models should be used

The consistency
property

No problems May cause
inconsistency, and
therefore
countermeasures
may be used

Will cause
inconsistency, and
therefore
countermeasures
should be used

Asymptotic
consistency should
be used

The Isolation
property

No problems May cause isolation
anomalies, and
therefore
countermeasures
may be used

Will cause isolation
anomalies, and
therefore
countermeasures
should be used

Countermeasures
should be used to
manage isolation
anomalies

The durability
property

No problems No problems No problems if
atomicity is
implemented

No problems if
atomicity is
implemented

Distribution options Distributed
concurrency control
will decrease
performance and
availability

May be implemented
in a distributed
DBMS without
further problems

Retriable
subtransactions may be
necessary to implement
atomicity

Many different
distributed
countermeasures
are available

Development costs A DBMS facility A DBMS facility Extra costs for
compensation
implementation

Extra costs for
countermeasure
implementation

That is, the global atomicity property is

implemented by using compensatable, pivot and
retriable subtransactions in that order. The global
consistency and isolation properties are managed by
using countermeasures as described by Frank and
Zahle (1998). The global durability property is
implemented by using compensation and/or the
durability property of the local DBMS. By using this
transaction model it is possible to increase the
availability of both central and distributed databases
because only short duration locks are used. The
major disadvantage of using short duration locks is
the problems of managing the consistency of data.
However, these problems can be reduced/solved by
using countermeasures against the isolation
anomalies that occur when the isolation property is
missing.
The paper is organized as follows:
Section 2 will describe an extended version of the
countermeasure transaction model, which includes
central databases, and we will describe the most

important countermeasures against the isolation
anomalies used in central databases. In section 3, we
will illustrate how to design database transactions
optimized for high availability by using short
duration locks. Concluding remarks are presented in
section 5.
Related Research: The transaction model described
in section 2 is an extended version of the
countermeasure transaction model described by
Frank and Zahle (1998), Frank (1999), and Frank
and Kofod (2002). This model owes many of its
properties to e.g. Garcia-Molina and Salem (1987);
Mehrotra et al. (1992); Weikum and Schek (1992)
and Zhang (1994).

2 THE TRANSACTION MODEL

A multidatabase is a union of local autonomous
databases. Global transactions (Grey and Reuter,

TRANSACTION DESIGN FOR DATABASES WITH HIGH PERFORMANCE AND AVAILABILITY

223

1993) access data located in more than one local
database. In recent years, many transaction models
have been designed to integrate local databases
without using a distributed DBMS. The
countermeasure transaction model (Frank and Zahle,
1998) has, among other things, selected and
integrated properties from these transaction models
to reduce the problems caused by the missing ACID
properties in a distributed database that is not
managed by a distributed DBMS. In the
countermeasure transaction model, a global
transaction involves a root transaction (client
transaction) and several single site subtransactions
(server transactions). Subtransactions may be nested
transactions, i.e. a subtransaction may be a parent
transaction for other subtransactions.
All communication with the user is managed from
the root transaction, and all data is accessed through
subtransactions. A subtransaction is either an
execution of a stored procedure that automatically
returns control to the parent transaction or an
execution of a stored program that does not return
control to the parent transaction. All remote
subtransactions are accessed through one of the
following types of middleware:
Remote Procedure Call (RPC)
From a programmer's point of view, a RPC
functions as a remote procedure call or submission
of a SQL query. From a performance and an
atomicity point of view, RPCs have the following
important properties:
• If a parent transaction executes several RPCs, the

corresponding stored procedures are executed
one at a time.

• A stored procedure or SQL submission has only
local ACID properties.

• The stored procedure or SQL submission
automatically returns control to the parent
transaction.

Update Propagation (UP)
In this context, UP is used in the sense of
propagating any data (not just updates) in such a
way that the data is transferred and stored/executed
with atomicity and durability properties. UPs have
the following properties, which are important from a
performance and an atomicity point of view:
• If a parent transaction initiates several UPs, the

corresponding, stored programs may be executed
in parallel.

• A stored program initiated from a UP has
atomicity together with the parent transaction,
i.e. either both or none are executed.

• The stored program does not automatically return
control to the parent transaction.

The following subsections will give a broad outline
of how approximated ACID properties are

implemented in the countermeasure transaction
model.

2.1 The Atomicity Property

An updating transaction has the atomicity property
and is called atomic if either all or none of its
updates are executed. In the countermeasure
transaction model, the global transaction is
partitioned into the following types of
subtransactions executed in different locations:
The pivot subtransaction that manages the atomicity
of the global transaction. The global transaction is
committed when the pivot subtransaction is
committed locally. If the pivot subtransaction aborts,
all the updates of the other subtransactions must be
compensated.
The compensatable subtransactions that all may be
compensated. Compensatable subtransactions must
always be executed before the pivot subtransaction
is executed to make it possible to compensate them
if the pivot subtransaction cannot be committed. A
compensatable subtransaction may be compensated
by executing a compensating subtransaction.
The retriable subtransactions that are designed in
such a way that the execution is guaranteed to
commit locally (sooner or later) if the pivot
subtransaction has been committed. A UP tool is
used to resubmit the request for execution
automatically until the subtransaction has been
committed locally, i.e. the UP tool is used to force
execution of the retriable subtransaction.
The global atomicity property is implemented by
executing the compensatable, pivot and retriable
subtransactions of a global transaction in that order.
For example, if the global transaction fails before the
pivot has been committed, it is possible to remove
the updates of the global transaction by
compensation. If the global transaction fails after the
pivot has been committed, the remaining retriable
subtransactions will be (re)executed automatically
until all the updates of the global transaction have
been committed.

2.2 The Consistency Property

The consistency property is not useful in distributed
databases with approximated ACID properties
because such a database is almost always
inconsistent.

2.3 The Isolation Property

The isolation property is normally implemented by
using long duration locks, which are locks that are

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

224

held until the (global) transaction has been
committed (Frank and Zahle, 1998). To ensure high
availability in locked data, short duration locks
should be used in all subtransactions, just as locks
should be released before interaction with a user.
This is not a problem in the countermeasure
transaction model as the traditional isolation property
is lost anyway. When transactions are executed
without isolation, the so-called isolation anomalies
may occur. If there is no isolation and the atomicity
property is implemented, the following isolation
anomalies may occur (Berenson et al., 1995 and
Breibart, 1992).
The lost update anomaly is by definition a situation
where a first transaction reads a record for update
without using locks. Subsequently, the record is
updated by another transaction. Later, the update is
overwritten by the first transaction.
The dirty read anomaly is by definition a situation
where a first transaction updates a record without
committing the update. Subsequently, a second
transaction reads the record. Later, the first update is
aborted (or committed), i.e. the second transaction
may have read a non-existing version of the record.
The non-repeatable read anomaly or fuzzy read is by
definition a situation where a first transaction reads a
record without using locks. Later, the record is
updated and committed by a second transaction
before the first transaction has been committed. In
other words, it is not possible to rely on the data that
have been read.
The phantom anomaly which is not dealt with in this
paper.
The countermeasure transaction model (Frank and
Zahle, 1998) describes countermeasures that reduce
the problems of the anomalies. The pessimistic view
countermeasure used in section 3 reduces or
eliminates the dirty read anomaly and/or the non-
repeatable read anomaly by giving the users a
pessimistic view of the situation. In other words, the
user cannot misuse the information. The purpose is to
eliminate the risk involved in using data where long
duration locks should have been used. A pessimistic
view countermeasure may be implemented by using:
• Compensatable subtransactions (or the pivot

transaction) for updates that limit the users’
options.

• Retriable subtransactions (or the pivot
transaction) for updates that increase the users’
options.

For example, when updating stocks, compensatable
subtransactions should be used to reduce the stocks
and retriable subtransactions should be used to
increase the stocks.

2.4 The Durability Property

Updates of transactions are said to be durable if they
are stored in stable storage and secured by a log
recovery system. The global durability property will
automatically be implemented, as it is ensured by the
log-system of the local DBMS systems (Breibart et
al., 1992).

3 TRANSACTION DESIGN IN E-
COMMERCE SYSTEMS

In this section, we will illustrate how to use our
transaction model in business-to-business E-
commerce. We will assume that the seller has a
customer file with the names, addresses, account
balances and credit limits for all his customers.
Therefore, the banks of the customers are not
involved in the following description of the order
transaction. At first, the buyer reads the offers made
by the seller. If the buyer wants to make an order,
the root transaction in the location of the buyer calls
a compensatable subtransaction at the location of the
seller. This subtransaction creates an order record
with relationship to the customer record at the same
location. Now, the buyer can make order-lines. For
each new order-line made by the buyer, the root
transaction starts a compensatable subtransaction,
and this subtransaction creates an order-line at the
location of the seller and updates the stock of the
product ordered in the order-line by using the
pessimistic view countermeasure. Pease notice that
making order lines cannot cause deadlock when only
short duration locks are used. If an order-line cannot
be fulfilled, the field “quantity-delivered” in the
order-line is updated. When the order form has been
completed, the pivot subtransaction updates the
account balance of the customer. If the credit limit
of the customer is not violated, the pivot
subtransaction will also confirm the deal for the
customer. Alternatively, the buyer will be the asked
to reduce the amount of the balance in order to avoid
violating the credit limit.By executing a
subtransaction that reduces the quantity ordered in
an order-line, the amount in the order-line can be
reduced and the stock of the product increased.
Finally, the buyer can retry to execute the pivot
subtransaction. The reread countermeasure should
be used as the customer record has been read earlier.

TRANSACTION DESIGN FOR DATABASES WITH HIGH PERFORMANCE AND AVAILABILITY

225

4 CONCLUSIONS

In this paper, we have analyzed how low isolation
levels, optimistic concurrency control, short duration
locks, and countermeasures against isolation
anomalies can be used to design transactions for
databases with high performance and availability.
The methods are independent of each other and,
therefore, a mixture of the methods may give the
best performance and availability. Using low
isolation levels will increase the availability of
locked data. If an application cannot accept the
anomalies that are caused by using a low isolation
level, it may be possible to minimize the time that
data is locked by substituting long duration
exclusive locks with short duration exclusive locks
and countermeasures against the anomalies that may
occur when a major database transaction is split into
minor database transactions performing the same
operations. The extra costs of this solution include
the implementation of approximated ACID
properties where e.g. DBMS aborts are substituted
by compensations. Even if all applications can
accept the anomalies caused by using a low isolation
level, problems may occur as there is no isolation
level that allows exclusive locks not to exclude
conflicting updates. Therefore, in hotspots where
many concurrent transactions update the same
records we recommend to use short duration
exclusive locks and countermeasures against the
anomalies that may occur when long duration
exclusive locks are substituted by short duration
locks.
Short duration locks and countermeasures against
the isolation anomalies should be mandatory for
long-lived transactions (Grey and Reuter, 1993) as
long duration locks per definition cannot be
recommended for such transactions. We have
illustrated how to use countermeasures against
isolation anomalies in E-commerce examples.

REFERENCES

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil,
E. and O’Neil, P., 1995, “A Critique of ANSI SQL
Isolation Levels”, Proc ACM SIGMOD Conf., pp. 1-
10.

Breibart, Y., Garcia-Molina, H. and Silberschatz, A.,
1992, “Overview of Multidatabase Transaction
Management”, VLDB Journal, 2, pp 181-239.

Frank, L., 1999, “Evaluation of the Basic Remote Backup
and Replication Methods for High Availability
Databases”, Software - Practice & Experience, Vol.
29, issue 15, pp 1339-1353.

L. Frank and Uffe Kofod, 2002, ‘Atomicity
Implementation in E-Commerce Systems’, Proc of the

Second International Conference on Electronic
Commerce, ICEB 2002, Taipei.

Frank, L. and Zahle, T, 1998, “Semantic ACID Properties
in Multidatabases Using Remote Procedure Calls and
Update Propagations”, Software - Practice &
Experience, Vol.28, pp77-98.

Gallersdörfer, R. and Nicola, M., 1995, “Improving
Performance in Replicated Databases through
Relaxed Coherency”, Proc 21st VLDB Conf, 1995, pp
445-455.

Garcia-Molina, H. and Salem, K., 1987, “Sagas”, ACM
SIGMOD Conf, pp 249-259.

Garcia-Molina, H. and Polyzois, C., 1990, “Issues in
disaster recovery”, IEEE Compcon., IEEE, New
York, pp 573-577.

Gray, J. and Reuter, A., 1993, “Transaction Processing”,
Morgan Kaufman, 1993.

Kung, H and Robinson, J, 1981, ‘On Optimistic Methods
for Concurrency Control’, ACM TODS 6, No. 2.

Humborstad, R., Sabaratnam, M., Hvasshovd, S. and
Torbjornsen, O., 1997, “1-Safe algorithms for
symmetric site configurations”, Proc 23th VLDB
Conf, 1997, pp 316-325.

Mehrotra, S., Rastogi, R., Korth, H., and Silberschatz, A.,
1992, “A transaction model for multi-database
systems”, Proc International Conference on
Distributed Computing Systems, pp 56-63.

O’Neil, P., “The Escrow Transaction Mode”, ACM TODS
11, No. 4, 1986.

Polyzois, C. and Garcia-Molina, H., 1994, “Evaluation of
Remote Backup Algorithms for Transaction-
Processing Systems”, ACM TODS, 19(3), pp 423-449.

Weikum, G. and Schek, H., 1992, “Concepts and
Applications of Multilevel Transactions and Open
Nested Transactions”, A. Elmagarmid (ed.): Database
Transaction Models for Advanced Applications,
Morgan Kaufmann, pp 515-553.

Zhang, A., Nodine, M., Bhargava, B. and Bukhres, O.,
1994, “Ensuring Relaxed Atomicity for Flexible
Transactions in Multidatabase Systems”, Proc ACM
SIGMOD Conf, pp 67-78.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

226

