
IDENTIFYING CLONES IN DYNAMIC WEB SITES USING
SIMILARITY THRESHOLDS

Andrea De Lucia, Giuseppe Scanniello, and Genoveffa Tortora
Dipartimento di Matematica ed Informatica - Università di Salerno - Via S. Allende - 84081 Baronissi (SA)

Keywords: Dynamic Web site maintenance, Web engineering, Web site analysis, source code clone analysis

Abstract: We propose an approach to automatically detect duplicated pages in dynamic Web sites and on the analysis
of both the page structure, implemented by specific sequences of HTML tags, and the displayed content. In
addition, for each pair of dynamic pages we also consider the similarity degree of their scripting code. The
similarity degree of two pages is computed using different similarity metrics for the different parts of a web
page based on the Levenshtein string edit distance. We have implemented a prototype to automate the clone
detection process on web applications developed using JSP technology and used it to validate our approach
in a case study.

1 INTRODUCTION

In the recent years the industry and academic
researchers have been showing great interests in the
engineering, maintenance, reverse engineering,
restructuring, and reuse of Web sites and
applications (Bieber & Isakowitz, 1995; Conallen,
2000; Ginige & Murugesan, 2001; Ricca & Tonella,
2001; Aversano et al., 2001). Similarly to legacy
systems, Web applications are subject to continuous
evolution (Boldyreff et al., 1999): internal and
external factors generate new or modified system
requirements, so they inevitably changes. Moreover,
Web applications change much more quickly than
traditional software systems; therefore, their
maintenance absorbs considerable efforts if
developers do not use methodologies that anticipate
changes and evolutions (Bieber & Isakowitz, 1995;
Ginige & Murugesan, 2001; Conallen, 2000).

Unfortunately, the current state of practice of
Web application development is far from using
consolidated methodologies; Web applications are
typically obtained by reusing the fragments of
existing pages and without explicit documentation.
This approach augments the code complexity and
the effort to test, maintain and evolve these
applications. Although in some case this is done in a
disciplined way (Aversano et al., 2001), the main
problem is the proliferation of duplicated Web
pages.

Code cloning is one of the factors that make
software maintenance more difficult (Baker, 1995;

Balazinska et al., 1999; Baxter et al., 1998; Kamiya
et al., 2002). A code clone is a code portion in
source files that is identical or similar to another. It
is common opinion that code clones make the source
files very hard to modify consistently. Clones are
introduced for various reasons such as lack of a good
design, fuzzy requirements, undisciplined
maintenance and evolution, lack of suitable reuse
mechanisms, and reusing code by copy-and-paste.
Thus, code clone detection can effectively support
the improvement of the quality of a software system
during software maintenance and evolution.

Recently, researchers have extensively studied
clone detection for static Web pages, written in
HTML, or dynamic ones, written in ASP (Di Lucca
et al., 2002; Lanubile & Mallardo, 2003). Lanubile
and Mallardo (2003) extend the metric-based
approach and the classification schema proposed by
Balazinska et al. (1999). Their approach exploits a
pattern matching algorithm to compare scripting
code fragments and is based on two steps: automatic
selection of potential function clones based on
homonym functions and size measures and visual
inspection of selected script functions. This
approach does not consider the problem of
identifying cloned pages, as it does not take into
account neither the structure of web pages nor their
content.

Different authors have tackled the problem of
identifying cloned web pages. Di Lucca et al. (2002)
encode the sequences of tags of HTML and ASP
pages into strings and identify pairs of cloned pages

391
De Lucia A., Scanniello G. and Tortora G. (2004).
IDENTIFYING CLONES IN DYNAMIC WEB SITES USING SIMILARITY THRESHOLDS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 391-396
DOI: 10.5220/0002597303910396
Copyright c© SciTePress

at structural level by computing the Levenshtein
string edit distance (Levenshtein, 1966) between the
corresponding strings. Pages are considered clones if
their Levenshtein distance is zero. They also use
metrics, such as lines of code and complexity
metrics, to identify clones at the scripting code level.
Ricca and Tonella (2003) enhance the approach
based on Levenshtein distance with hierarchical
clustering techniques to identify clusters of
duplicated or similar pages to be generalized into a
dynamic page. Unlike the approach proposed by Di
Lucca et al. (2002), the distance of cloned pages
belonging to the same cluster is not zero. Each page
is initially inserted into a different cluster and at
each step clusters with minimal distance are merged
thus producing a hierarchy of clusters. The clusters
of cloned pages are selected by the software
engineer, by choosing a cut level in the hierarchy.

In this paper we propose an approach to
automatically detect duplicated pages in dynamic
and/or static Web sites. Similarly to previous
approaches (Di Lucca et al., 2002; Ricca and
Tonella, 2003) we also use Levenshtein string edit
distance as basic metric to identify clones. Unlike
previous approaches, besides the distance at
structural level, we also consider the distance of
cloned pages at the content and scripting code levels.
In particular, starting from the Levenshtein edit
distance, we define similarity measures for
structural, content, and scripting code of two
dynamic pages and use thresholds on the similarity
measures to establish whether two pages are clones.

The approach has been tailored for web
applications developed using JSP technology,
differently from the approaches above. However, it
can be also used on web applications developed
using other technologies, such as ASP. We have
implemented a prototype to automate the clone
detection process. The tool compares pairs of HTML
and JSP pages and computes the similarity degree of
each pair. The prototype enables independent tuning
of the thresholds for the similarity metrics of
structure, content, and scripting code of pairs of JSP
pages; this feature enables to adapt the tool to
different contexts and to refine results on particular
subsets of a Web application. We have assessed the
validity of the approach and the tool by analyzing
the official Web site of the 14th International
Conference of Software Engineering and Knowledge
Engineering (SEKE, 2002).

The paper is organized as follows: in Section 2
we present the clone detection method, while in
Section 3 we describe the system prototype and its
architecture. The case study and the experimental
results are discussed in Section 4. Finally, we give
conclusions and future works in Section 5.

2 CLONE DETECTION

We propose three classification levels for clone
analysis in dynamic web pages:

Structure - the basic property which is exploited
to determine the matching of two pages is the
syntactic structure, defined by the HTML tags.

Content – at this level also the text information
associated with HTML tags of two web pages is
compared.

Scripting code – at this level the server-side
and/or the client/side scripting code of two web
pages is compared. It is worth noting that this
comparison can range from a simple string matching
(in this case this is similar to content level clone
analysis) to a more complex syntactic or semantic
pattern matching.

The first two levels also apply to HTML pages,
while the scripting code level is only used for
dynamic web pages.

2.1 The Clone Identification Process

Figure 1 shows the underlying process of our clone
analysis approach. Although our approach is
general, in the following we will refer to dynamic
web sites developed using JSP technology. In the
first phase of the process the files of a web
application are separated in two subsets: JSP and
HTML pages. This step is performed because
scripting level clone analysis is only performed on
the JSP pages.

The HTML parsing produces string
representations for the HTML pages corresponding
to their structure and content. The strings are
produced visiting the abstract syntax tree of the
pages. For the JSP pages the process is similar, but
also string representations of the java code is
produced. There are basically two ways to produce
the string representations for structure, content, and
scripting code of a web page. The first way, used in
the current implementation of the prototype,
computes separate strings for the different clone
analysis levels. In this way, the comparison of the
different strings at the different levels can be
performed independently of the other levels.

An alternative to this approach consists of
linking each content and java code string to the
corresponding HTML/JSP tag. In this case, the
content and java source code fragments of
corresponding tags in the structure can be compared
while performing the structure level analysis. A
disadvantage of this approach is that we are not able
to identify content and java source code similarity,
whenever the similarity degree at the structure level

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

392

of the two pages is low. For example, two web pages
could have the same java code distributed in
different ways across the page structure.

The produced strings are used to compute the
similarity degree of two web pages at structure,
content and scripting code level. The similarity
degree is based on the computation of the
Levenshtein string edit distance (Levenshtein, 1966)
and its comparison with a threshold. The thresholds
are dynamically computed based on the size of the
two strings and can be separately tuned for the
different clone analysis levels.

2.3

Figure 1: The clone identification process

2.2 Levenshtein Distance Model and
Similarity Relation

The similarity degree of the strings encoding
structure, content and java code of a web page is
based on the Levenshtein edit distance model
(Levenshtein, 1966), which is one of most important
models for string matching. The Levenshtein
distance is defined as the minimum cost required to
align two strings: given two strings x and y the
Levenshtein distance is defined as the minimum
number of insert, delete, and replace operations
required to transform x into y. Generally, the
approach assumes that the insert and delete
operations have cost 1, while the replacement has
cost 2 (it is equivalent to a sequence of delete and
insert operations). We use these costs as default
values, although our approach can be parameterized
with respect to the costs of the operations.

Whenever the Levenshtein distance is 0 the pairs
of strings constitute perfect or identical clones (Di
Lucca et al., 2002). However, perfect clones in web
applications are rare; more interesting is the case of
nearly-identical or similar clones (Ricca and
Tonella, 2003). In our approach two web pages can

be considered clones if the distance of the
corresponding strings is lower than a given threshold
t. This threshold can be dynamically computed from
the minimum percentage of similarity p required to
consider the two strings as clones and the maximum
of the length of the two strings. Therefore, given two
strings x and y, let D(x, y) be their distance and
S(x, y) be their similarity degree. The two strings are
clones if S(x, y) ≥ p, or equivalently D(x, y) ≤ t,
where t = f(p, maxlength(x, y)).

In the current implementation, the threshold is
computed in the following way:

t = 2 maxlength(x, y) (1 – p)

It is worth noting that whenever p is 1 (100%
minimum similarity required) the clone analysis will
only identify perfect clones.

3 PROTOTYPE

The effectiveness of a clone detection process may
significantly depend on the tools used to support it.
The proposed prototype has been implemented in
Java, and integrates several software components
needed during the clone analysis of a web
application. The system architecture is shown in
Figure 2, its main modules are the Graphical User
Interface (GUI) and the Engine.

Figure 2: Prototype architecture.

The GUI enables the user to select the files of
the Web site and display the results of the clone
analysis. Web site files can be locally or remotely
stored. When the files are remotely stored on the
Web Server, the prototype establishes a FTP
connection with the remote file system, through the
FTP client module.

The Engine implements the core clone analysis
functionality and includes the computation of the

J
Fi

SP/HTML
les

File
aration

Page
Similarity

Computation
Java Code
Similarity

Computation

Content
Similarity

Computation

Structural
Similarity

Computation

String
representation

JSP
Parsing

String
representations

HTML
Parsing

Clone Analysis
Report

Sep

Graphic User
Interface (GUI)

FTP
Client

File
Selector

HTML/JSP
parser

Report
Module

Prototype
Engine

Web Server
File System

User File
System

User File
System

Page Transformer

JSP/HTML
pages Converter

IDENTIFYING CLONES IN DYNAMIC WEB SITES USING SIMILARITY THRESHOLDS

393

Levenshtein distance. It partitions the files into two
sets of HTML and JSP pages to be analyzed by the
Page Transformer to produce the strings encoding
the page structure, content, and the scripting code.
The Engine can be configured to enable the
comparison of HTML and JSP pages together, by
excluding the analysis of the java source code.

The parser has been implemented by modifying
the open source HTML parser written in Java
(HTMLParser ver. 1.2), available under GPL license
from http://sourceforge.net/projects/htmlparser. This
software component has a flexible architecture,
which has allowed us to easily enhance its
functionality and configure it. The parser is a very
important component of the prototype; it has a
double function: analyzing the page correctness and
retrieving the information useful for the approach.
For optimization reasons, the page structure is
encoded into a string constructed on a different
alphabet than the HTML/JSP tags. Indeed, the
computation of the Levenshtein algorithm on strings
of HTML/JSP tags would have been very expensive
and in some cases impracticable. Thus we have
defined and used a different alphabet, where each
alphabet symbol codifies an HTML/JSP tag.

The Engine identifies the clones by computing
the Levenshtein edit distance of each pairs of strings
encoding the structure, the content, and the java
code, and using different dynamic thresholds for
different clone analysis levels, as defined in the
previous section. The thresholds are computed
according to the minimum similarity percentage
required, chosen by the user through the GUI.

The Report Module enables to assess and
analyze the results of the clone analysis. The
information concerning the analyzed pages and the
identified clones are stored into files; these results
can be also visualized through the GUI.

4 CASE STUDY

The method and tool presented in the previous
sections have been validated in a case study. We
have used the official site of SEKE 2002, the
fourteenth International Conference on Software
Engineering and Knowledge Engineering
(http://www.scienzemfn.unisa.it/seke/index.html), a
web application developed in JSP and used to
support the organizers and the academic community
for paper submission, refereeing, and conference
registration. Two joint workshops on Web
Engineering and Software Engineering Decision
Support, respectively, also used this application. As
our research group periodically organizes scientific
conferences, we are going to reuse, and enhance the

SEKE Web application. To this aim, it has been
necessary to analyze and restructure the system.

The case study consists of 157 files distributed in
one directory. The static pages are implemented by
52 files with html extension, while 107 files with
extension jsp implement the dynamic pages. The site
contained some other files, such as images, a Java
applet, java classes, logos, etc., which were used in
the analyzed pages. The files that implement the
static and dynamic behavior of the SEKE site were
stored in a single folder, so the pages have been
grouped without any meaningful classification.

The Web application was grown in an
uncontrolled way. The main reason, for this was the
lack of software requirements and development
methodology. In fact, the requirements were
incomplete and fuzzy. The development process was
not documented, so the design rationales were not
evidenced. Moreover, no configuration and
versioning management was used during the
development of the Web application. These factors
have produced dead code, i.e. some unreachable
pages that were sometimes also grouped. As a result,
the general navigational schema of the SEKE Web
application appears as set of disconnected graphs.
Typically, each sub-graph represents an event of the
conference, for example paper submission deadline,
acceptance notification, or camera-ready paper due.

The first step of the case study consisted of
tuning the similarity thresholds. We have tried
different thresholds for the HTML and JSP pages
and evaluated the obtained results using two well
known metrics of the information retrieval and
reverse engineering field, namely precision and
recall. In our case, the recall is the ratio between the
number of actual pairs of cloned pages identified by
the tool over the total number of actual pairs of
cloned pages in the web application; the precision is
the number of actual pairs of cloned pages identified
by the tool over the total number of identified pairs.
Some results of this tuning step are shown in Table 1
and Table 2 for HTML and JSP pages, respectively,
and discussed in the following subsections.

4.1 HTML pages

For the HTML pages the best results have been
achieved using 90% as threshold for structural
similarity. The prototype detected 229 pairs of
structural clones. The number of pairs of clones is so
high because the developers have used the same
graphical layout for each page. We have applied
different thresholds for content similarity to the
results achieved with the structural similarity
threshold above. This has been used to identify

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

394

(a)

(b)
Figure 3: A pair of HTML cloned pages

Table 1: Precision and recall for HTML pages.

Structure Content Recall-Precision for
Structure

Recall-Precision
for Content

75% 70% 100% - 25% 85% - 35%
90% 60% 95% - 75% 95% - 25%
90% 80% 95% - 75% 60% - 70%
95% 70% 90% - 80% 65% - 65%

Table 2: Precision and recall values on JSP pages

Structure Content Code Recall-Precision
for Structure

Recall-Precision
for Contents

Recall-Precision
for Java Code

90% 80% 80% 90% - 43% 90% - 60% 65% - 82%
90% 90% 80% 90% - 43% 80% - 65% 65% - 82%
95% 80% 80% 60% - 80% 70% - 70% 60% - 85%
95% 90% 95% 60% - 80% 65% - 85% 50% - 95%

groups of pages with different content similarity.
The minimum content similarity threshold that
maintains the same 229 pairs recovered with the
structural similarity analysis is 50%. This means that
all recovered pages have at least 50% content
similarity. In our case this was due to the fact that all
pages have a column including the same
navigational menu on the left side and the
conference name and logo on the top (see the two
sample pages in Figure 3). It is worth noting that the
precision values for the content similarity are not
very high. This is normal as in HTML pages we do
not expect to find many pages with the same
content. However, using higher thresholds for the
content similarity, we were able to prune pairs of
pages with more differences in the text content in the
middle area of the page. Pairs of pages recovered
with higher thresholds have very little text in the
middle or are very similar (nearly perfect clones).
For example, the two pages in Figure 3 are still
recovered with a 97% structural similarity threshold
and content similarity 95% threshold. This means
that pages with high content similarity are also likely
to have high structural similarity and therefore
content similarity can help to improve the results
achieved with structural similarity towards the
identification of nearly perfect clones.

4.2 JSP Pages

On the other hand, the results for structural
similarity for the JSP pages are not so good as for
the HTML pages. The best results are achieved
between 90% and 95% thresholds. However, in this
case we are not able to achieve high values of recall
and precision with the same threshold. This is
because the web application includes pages with a
very structured layout and pages with very poor
layout, developed to enable the organization to
achieve statistics about the conference. In the case of
pages with very structured layout the number of tags
of the middle area is marginal with respect to the
number of tags of the layout. For these pages both
precision and recall are very high even with high
structural similarity thresholds. On the other hand,
small differences in the tags of two pages with poor
layout results in lower structural similarity values.
This means that higher recall values are achieved
with lower thresholds, but this also results in lower
precision values.

In the case of JSP pages most of the content is
dynamically generated and very few is included in
the pages. This justifies the better results of
precision and recall for content similarity for the JSP
pages with respect to the HTML pages. The results
for the clone analysis at the code level are also very
interesting. Very good precision values are achieved
using high code similarity thresholds, still
maintaining good recall values. Better results might
be achieved using a different approach to code clone
analysis than the Levenshtein string edit distance.

The clone analysis results have demonstrated
that there are some cases of nearly identical pages.
Therefore, we used higher thresholds to identify the
nearly identical pages, in particular 100% for
structural and content similarity and 99% for
scripting code similarity. The results were 15 pairs
of clones corresponding to 22 different files. We

IDENTIFYING CLONES IN DYNAMIC WEB SITES USING SIMILARITY THRESHOLDS

395

tried to understand the real difference between each
pair of cloned pages and we have observed that this
difference only consisted on their SQL code.
Moreover, the references to the database tables often
were the only difference in the SQL queries. It is
worth noting that the file names of these pages are
also very similar, meaning that there are groups of
different pages that actually implement the same or
very similar functionality for the different events
(main conference and workshops). Indeed, these
files might be clustered into groups of clones in a
similar way to the approach by Di Lucca et al.
(2002). In general, clustering is possible if the
similarity threshold required is very high, otherwise
our experience has demonstrated that clustering does
not produce meaningful results.

5 CONCLUSION

In this paper an approach to clone analysis for Web
applications has been proposed together with a
prototype implementation for JSP web pages. Our
approach analyzes the page structure, implemented
by specific sequences of HTML tags, and the
content displayed for both dynamic and static pages.
Moreover, for a pair of JSP pages we also consider
the similarity degree of their java source. The
similarity degree can be adapted and tuned in a
simple way for different web applications.

We have reported the results of applying our
approach and tool in a case study. The results have
confirmed that the lack of analysis and design of the
Web application has effect on the duplication of the
pages. In particular, these results allowed us to
identify some common features for the SEKE
conference and the collocated workshops that could
be integrated, by deleting the duplications.
Moreover, the clone analysis of the JSP pages
enabled to acquire information to improve the
general quality and conceptual/design of the
database of the web application. Indeed, we plan to
exploit the results of the clone analysis method to
support web application reengineering activities
(Antoniol et al., 2000).

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.,
2000. Web Site Reengineering using RMM. Proc. of
International Workshop on Web Site Evolution,
Zurich, Switzerland, pp. 9-16.

Aversano, L., Canfora, G., De Lucia, A., and Gallucci, P.,
2001. Web Site Reuse: Cloning and Adapting. Proc. of

3rd International Workshop on Web Site Evolution,
Florence, Italy, IEEE CS Press, pp. 107-111.

Baker, B. S., 1995. On finding duplication and near
duplication in large software systems. Proc. of 2nd
Working Conference on Reverse Engineering,
Toronto, Canada, IEEE CS Press, pp 86-95.

Balazinska, M., Merlo, E., Dangenais, M., Lague, B. and
Kontogiannis, K., 1999. Measuring Clone Based
Reengineering Opportunities. Proc. of 6th
International Symposium on Software Metrics, Boca
Raton, Florida, IEEE CS Press, pp. 292-303.

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and
Bier, L., 1998. Clone Detection Using Abstract Syntax
Trees, Proc. of International Conference on Software
Maintenance, IEEE CS Press, pp. 368-377.

Bieber, M. and Isakowitz, T., 1995. Special issue on
Designing Hypermedia Applications. Communications
of the ACM, 38(8).

Boldyreff, C., Munro, M., and Warren, P., 1999. The
evolution of websites. Proc. of 7th International
Workshop on Program Comprehension, Pittsburgh,
Pennsylvania, IEEE CS Press, pp. 178-185.

Conallen, J., 2000. Building Web application with UML,
Addison Wesley.

Di Lucca, G. A., Di Penta, M., and Fasolino, A. R., 2002.
An Approach to Identify Duplicated Web Pages. Proc.
of 26th Annual International Computer Software and
Application Conference (COMPSAC’02), Oxford, UK,
IEEE CS Press, pp. 481-486.

Ginige, A. and Murugesan, S., (eds.) 2001. Special issue
on Web Engineering. IEEE Multimedia, 8(1-2).

Kamiya, T., Kusumoto, S., and Inoue, K., 2002.
CCFinder: A Multilinguistic Token-Based Code Clone
Detection System for Large Scale Source Code. IEEE
Transactions on Software Engineering, 28(7),
pp. 654-670.

Lanubile, F. and Mallardo, T., 2003. Finding Function
Clones in Web Application. In Proc. of 7thEuropean
Conference on Software Maintenance and
Reengineering, Benevento, Italy, IEEE CS Press,
pp. 379-386.

Levenshtein, V. L., 1966. Binary codes capable of
correcting deletions, insertions, and reversals,
Cybernetics and Control Theory, 10, 707-710.

Ricca, F. and Tonella, P., 2001. Understanding and
Restructuring Web Sites with ReWeb. IEEE
Multimedia, 8(2), 40-51.

Ricca, F. and Tonella, P., 2003. Using Clustering to
Support the Migration from Static to Dynamic Web
Pages. Proc. of 11th International Workshop on
Program Comprehension, Portland, Oregon, IEEE CS
Press, pp. 207-216.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

396

