
TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY
OBJECTS IN JINI

Nikolaos Papamichail, Luminita Vasiu
School of Computer Science, Middlesex University, London, UK

Keywords: Jini Security, Proxy Trust Verification

Abstract: Jini networking technology represents an exciting paradigm in distributed systems. Its elegant approach in
computer networking possesses immense advantages, but also generates security problems. Extensive
research has been undertaken and existing security methodologies have been applied to provide a safe
execution environment. However the unique nature of Jini has made it hard for traditional security
mechanisms to be applied effectively. Part of the problem lies within the downloaded code and in the lack
of centralised control. Current solutions are based on assumptions; therefore they are inadequate for
enforcing the security requirements of the system. The goal of our research is to increase the security of the
Jini model without altering its initial characteristics. We present our preliminary research efforts in
providing an alternative, fault tolerant security architecture that uses a trusted local verifier in order to
evaluate and certify the correctness of remote calls.

1 INTRODUCTION

Jini networking technology (Sun Microsystems
Inc.2003a; http://www.jini.org/) presents an exciting
paradigm in distributed computing. Based on the
Java programming language, it allows the
development of spontaneous networked systems.
Users and applications are able to dynamically
locate one another and form on-the-fly communities.
Unlike traditional systems that rely on a fixed
protocol and central administration, Jini requires no
further human intervention once being set up. It
employs strong fault-tolerance mechanisms that do
not attempt to eliminate or hide the fact that network
failures may happen. On the contrary it provides a
programming model and an infrastructure that allow
developers to recognise and isolate any faults that
might occur.
When Jini was made publicly available, no security
has been taken into consideration. The Java
language alone was not adequate to cope with the
security required in a distributed setting. Although
some solutions have been proposed, Jini lacked a
generic security model that could be applied to
counter any threats that might arise. The Davis
project (http://davis.jini.org/) presents such a
security model that has been recently incorporated
into the latest Jini release. The security model is
based on well known and proven techniques to

enforce the basic requirements for network security.
However, some of the mechanisms that Jini employs
are unique in distributed computing. Additionally,
neither any real world applications that make use of
the model nor a formal evaluation of it have
appeared yet. Thus any assumptions about the
correctness of the design and the degree of security
provided might prove to be mistaken. The purpose
of our research is to examine the security model
employed by Jini technology for any potential
security faults and propose appropriate
modifications. In this paper we focus in the
algorithm responsible for verifying trust in Jini
proxy objects.
The rest of the paper is organised as follows. Section
2 presents an overview of the Jini programming
model and infrastructure, particularly the
components that constitute a Jini system and other
mechanisms relevant to Jini operation. Section 3
presents some security problems related to proxy
objects, Lookup Services and Jini Services while
Section 4 presents an overview of the current Jini
security model, the Davis Project, and a critical
approach to its proxy verification algorithm. Section
5 presents an outline of two proposed solutions to
the issues related with proxy object verification and
the advantages that they may possess. Section 6
presents related work and some concluding thoughts
are drawn in Section 7.

68
Papamichail N. and Vasiu L. (2004).
TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY OBJECTS IN JINI.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 68-75
DOI: 10.5220/0001402000680075
Copyright c© SciTePress

2 BACKGROUND

Jini (Sun Microsystems Inc., 2003a;
http://www.jini.org/) is a distributed system based in
Java that allows the establishment of spontaneous
network communities or federations. To make that
possible, Jini provides the following:
An infrastructure that enables devices, human users
and applications to dynamically discover one
another without any prior knowledge of their
location or of the network’s topology and form
dynamic distributed systems. The infrastructure is
composed of a set of components based on Jini’s
programming model. Parts of the infrastructure are
the discovery join and lookup protocols and the
Lookup Service (Sun Microsystems Inc., 2003a). A
programming model that is used by the
infrastructure as well as by services. Besides service
construction, the programming model provides
interfaces for performing leasing as well as event
and transaction handling.
Services that are employed inside a federation and
provide some functionality. Services exploit the
underlying infrastructure and are implemented using
the programming model.

2.1 Services

Every entity that participates in a Jini system and
provides some functionality is perceived as a
service. No separation is made regarding the type or
the characteristics of the service. A service could be
either a hardware device, a piece of software or a
human user. Jini provides the means for services to
form interconnected systems, and each one
separately to offer its resources to interested parties
or clients. The separation between a service and a
client, however, is sometimes blurred, as sometimes
a Jini service may act both as a service and a client.
A word process application, for example, is
perceived as a service by any human user that writes
a document, although the same application acts as a
client whenever it uses a device such as a printer.
The latter is again a Jini service, thus for the
infrastructure the word application is now its client.

2.2 Proxy objects

In order for services to participate in a Jini system
they must create an object that provides the code by
which they can be exploited by potential clients, the
proxy object. The proxy object contains the
knowledge of the service’s location and the protocol
that the service implements. It also exposes an
interface that defines the functions that can be

invoked. A client is able to make use of a service
only after the correspondent service’s proxy object is
downloaded to the client’s local space. By invoking
functions defined in the proxy interface, clients are
able to contact and control services. Clients need
only to be aware of the interface that the proxy
implements and not of any details of the proxy
implementation.

2.3 Lookup Service

The Lookup Service (LUS) is a special kind of
service that is part of the Jini infrastructure. It
provides a mechanism for services to participate in a
Jini system and for clients to find and employ these
services. The Lookup Service may be perceived as a
directory that lists all the available services at any
given time inside a Jini community. Rather than
listing String based entries that point back to the
location of a service, the Lookup Service stores
proxy objects registered by Jini services.

2.4 Discovery Join and Lookup

Relevant to the use of Lookup services are three
protocols called discovery, join and lookup (Sun
Microsystems Inc. 2003a). Discovery is the process
where an entity, whether it would be a service or a
client, is trying to obtain references to a lookup
service. After a reference has been successfully
obtained, the entity might register a proxy object
with the Lookup service (join), or search the Lookup
Service for a specific type of service (lookup). The
discovery protocol provides the way for clients and
services to find available Lookup Services in the
network, and for Lookup Services to announce their
presence.

3 JINI SECURITY ISSUES

Typically security is concerned with ensuring the
properties of confidentiality, integrity, authentication
and non-repudiation (Menezes et. al, 1996):

• Confidentiality ensures that information
remains unseen by unauthorised entities

• Integrity addresses the unauthorised
alteration of data

• Authentication is the verification of identity
of entities and data

• Non-repudiation prevents an entity from
denying previous commitments or actions

These properties are generic and apply to a wide
variety of systems. Inside Jini, no prior knowledge

TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY OBJECTS IN JINI

69

of the network’s infrastructure is assumed. For that
reason, Jini is not only bound to security problems
related to distributed systems, but also to any
additional issues that the spontaneity of the
environment invokes. The following components
present different security requirements and they will
be examined separately.

3.1 Proxy Object Issues

Nothing should be able to alter the state of the proxy
object, either by intention or by fault. That means
that the integrity of the proxy object must be ensured
(Hasselmeyer et. al, 2000a). Since the proxy object
is downloaded from an unknown location in the
network, neither the source nor the intentions of the
proxy object can be verified. Therefore, even the act
of downloading the proxy of a service is considered
by itself a security risk. Moreover, the proxy is
responsible for performing the communication
between the client, and the service that the proxy
represents. Therefore the integrity and
confidentiality of the communication has to be
preserved, since the communication link might be
intercepted, altered, or simulated by someone with
malicious intentions. The privacy and anonymity of
the client may be abused, because the client can not
be ensured that the proxy does indeed provide the
functionality it claims (Hasselmeyer et. al, 2000a).
On the other hand it has to be verified that any data
that needs to be supplied to the proxy object, for the
interaction with the service to take place, reaches the
appropriate service (JAAS).

3.2 Lookup Service Issues

The Lookup Service lacks any mechanism for
authenticating services (Schoch et. al, 2001). That
means every service can discover the Lookup
Service and register its proxy. Malicious proxies
may register and pretend they provide some
functionality, while they don’t. Moreover, every
client can search the Lookup Service and find which
services are provided. Some services may require
only registered users to access them. Therefore
access control mechanisms need to be imposed.
Additionally, clients might encounter unfairness
while searching the Lookup Service for available
services (Hasselmeyer et. al, 2000a). There is no
way a client of a service can be assured that he
received the best available service from the Lookup
Service. The fact that every service can register and
even re-register with the Lookup Service can lead to
“man-in-the-middle” attacks (Schoch et. al, 2001). A
malicious service just has to re-register its proxy
with the same service ID as the original one. Every

time a client tries to access the required service, the
Lookup Service may provide him with the new,
malicious proxy. The client is unaware of the
change, as the new proxy looks like it implements
the same interface as the original one.

3.3 Service Interaction issues

In order for an interaction between two services to
take place, the service acting as a client must first
locate the provider of the desired service, via the
process of discovery, and then download its
corresponding proxy object. However, in a
spontaneous environment like Jini, hundreds of
services may be present at the same time and many
of them may provide the same functionality. No
standard names or address for recognising individual
services exist, besides a unique service ID that is
assigned by the Lookup Service. However, it is
dependent upon the provider of each service to
decide whether or not the assigned ID will be stored
and used in any future transactions. Therefore clients
have to be able to authenticate the services they
access (Eronen et. al., 2000). Similarly, the service
provider has to be able to authenticate clients that try
to use its resources and call its provided functions.
Another aspect in the service interaction is different
access levels (Kagal et. al, 2001). An obvious
solution to this problem is the integration of access
control lists. Every user could be identified by a
unique username and password that would grant him
or deny certain permissions. However, new
problems arise, like the distribution of the
appropriate keys and the way that the permissions
are to be decided.

4 THE DAVIS PROJECT

The Davis project (http://davis.jini.org/) is an effort
led by Sun Microsystems’ project team responsible
for the development of Jini. The purpose is to satisfy
the basic Jini requirements for security, by providing
a security programming model that would be tightly
integrated with the original Jini programming model
and infrastructure. Part of the requirements
(Scheifler, 2002) has been to avoid changing any
existing application code by defining security
measures at deployment time. Also to extend the
security mechanisms provided by the Java
programming language, such as the Java
Authentication and Authorisation Service (JAAS).
The Davis project has been integrated with the
original release of Jini networking technology (Jini
specifications archive – v 2.0) resulting in the

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

70

release of the Jini starter kit version 2 (Sun
Microsystems Inc., 2003a).

4.1 Constraints

In order to support a broad variety of applications
and requirements, the security model dictates that
both service providers and their clients should
specify the type of security they require before any
interaction between them takes place. Decisions
upon the type of the desirable security are expressed
by a set of constraints that have the form of Java
objects. Any service that wishes to incorporate
security in its current implementation has to
implement a proxy object that implements a well-
known interface (Sun Microsystems Inc., 2003b).
The interface defines a method for clients and
services to set constraints to the proxy object. If the
proxy implements that interface, all the imposed
constraints apply to every single call through any
method defined by the proxy. The basic constraints
are the equivalent of Boolean constants that allow
decisions upon the type of security required to be
specified in proxy objects. Typically service
providers specify the constraints during the proxy
creation, while clients set the constraints after the
proxy object has been downloaded. Constraints
specify only what type of security is expected but
not how this is implemented.
The security model dictates that constraints imposed
by services and clients are combined to a single set
of constraints. If any of them contradict with each
other then no calls are performed. It is possible,
however, that alternative constraints are defined.
This provides an elegant way for all parties
participating in a Jini interaction to have direct
control over the security imposed.

4.2 Object Integrity

There are two mechanisms that the current security
model employs to provide integrity for the code of
proxy objects. Both assume that the http protocol is
used. The first mechanism is http over SSL (https)
(Rescorla, 2000), the standard protocol for providing
web site security in terms of server authentication,
confidentiality and integrity. The other is a custom
defined protocol called HTTPMD (Scheifler, 2002;
Sun Microsystems Inc., 2003b) The proxy object
consists of code which is downloaded by clients, and
data which is downloaded from the service.
Therefore to ensure total integrity these mechanisms
have to apply to both the location where the proxy
object is downloaded from and the location of the
object’s codebase. Along with integrity, the https
protocol provides confidentiality and encryption,

resulting in additional overhead when these are not
required. In these cases the HTTPMD protocol is
used. The location of objects, including their code, is
specified by a normal http URL. Attached to it is a
cryptographic checksum of the contents of the code,
a message digest (Rivest, 1992). By computing the
checksum of the downloaded data and code and
comparing it with the attached message digest,
clients are ensured that integrity has been preserved,
since any modification in the contents would result
in a different message digest.

4.3 Proxy Trust Algorithm

In terms of deciding whether a client trusts a proxy
object downloaded by an unknown source, the
current model (http://davis.jini.org/) employs the
procedure described below. It is assumed that the
client has already downloaded a proxy object from
somewhere but it can not yet trust neither the proxy
object not its correspondent service. Initially the
client performs an object graph analysis of the proxy
object. By checking recursively all the classes that
the object is composed of it can be determined
whether these classes are local or not. If the classes
are local, in perspective to the client, then the proxy
object is considered trusted. This is accepted on the
basis that all local code is considered trustworthy. In
the case where the proxy object is not fully
constructed of local classes, the following
components take part in the proxy trust verification
algorithm:
1. Proxy object
This is the object that implements the server’s
functionality. It is downloaded by the client,
traditionally from the Lookup Service and it contains
the knowledge of how to communicate back with the
server. All remote calls to the server are passing
through this object and this is the object that needs
to be verified.
2. A ‘bootstrap’ proxy
If the object graph analysis proves that the classes
used for the construction of the proxy object are not
local relatively to the client, the client uses the initial
proxy object to request another object called the
‘bootstrap’ proxy. The bootstrap proxy should be
only consisted of local classes (relevant to the
client). The purpose is that clients can trust an object
that only uses local code to run. The ‘bootstrap’
proxy is also used to authenticate the server to the
client, as well as to provide him with the verifier
described next.
3. A proxy Verifier
The Verifier is an object sent to the client by the
server, using the ‘bootstrap’ proxy. It checks the

TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY OBJECTS IN JINI

71

downloaded proxy object in order to verify whether
the server trusts the initial proxy object or not.
A client obtains a proxy object from the network
using Jini discovery and lookup mechanisms. The
client examines whether the proxy object is using
local code (relative to the client). Since this is
normally not the case the client has to verify whether
the proxy object can be trusted. The way that this is
performed by the current security model is
illustrated in Figure 1.

Figure 1: The proxy trust authentication employed by the

current security model

In order to verify that the proxy originates from a
legitimate service, the client has to contact the same
service and ask the service whether the proxy should
be trusted. Since there is no way to directly contact
the service, the client places a call through the proxy
it can not yet trust, asking for a ‘bootstrap’ proxy
(1). The bootstrap proxy has to use only local
classes, relative to the client, in order to be
considered trustworthy. After the bootstrap proxy is
downloaded to the client’s local address space (2),
and the locality of the classes that compose the
bootstrap object is verified, the client performs a call
through it (3). Part of the call is to request from the
service to authenticate. After the service has
authenticated successfully, it passes a verifier object
to the client (4). Finally the verifier is used to verify
the legitimacy of the initial proxy object (5).

4.4 Critical Review of the proxy trust
algorithm

A number of potential problems might arise from the
verification algorithm described above. The first is
that clients have to rely on an object downloaded
from an unknown source (the proxy object) to obtain
the bootstrap proxy. In order for the latter to occur,
clients have to place a remote call through an
untrusted object. Since the functionality that the
proxy object implements is unknown, clients may
unintentionally execute an operation that presents a

security risk in case the proxy is a malicious object.
The second problem is that the service provider has
to have some knowledge of the type of classes that
are local to the user. If the bootstrap proxy is not
consisted entirely by local classes, relevant to the
client, the client would not utilize it to obtain the
verifier.
A third type of problem is related to the way and
type of checks that the verifier performs to the proxy
object. There is no standardised set of tests that
could be performed, since these are left for the
service providers to implement. The method
suggested is that the verifier carries the code of the
proxy object. By checking the equality of the code
that the verifier carries with the code of the proxy
object, it is possible for a service to identify the
correctness of the proxy object. However, there is no
way to ensure whether the checks performed are
adequate or if any checks are performed at all.
Therefore a ‘lazy’ verifier that just confirms the
correctness of proxies without performing any
checks might incorrectly identify a malicious object
as a legitimate one.
Finally faults might occur if a service provider
updates the implementation of the proxy object
without updating the implementation of the verifier
too. In that case legitimate proxy objects would not
be able to be identified correctly, since the equality
check would fail. Therefore the service provider
might unintentionally cause a denial of service
attack not initiated by a malicious client, but by
himself.

5 AN ALTERNATIVE WAY OF
VERIFYING PROXY TRUST

Instead of relying on the untrusted proxy object
downloaded from an unknown source to obtain a
proxy verifier, clients might be able to protect
themselves from malicious proxy objects by using
their own local verifier. The verifier is generated
locally by clients before any participation in a Jini
federation takes place. In order to create the verifier,
clients specify their security requirements such as
authentication, confidentiality and integrity. These
requirements are injected to the verifier and might
vary for different scenarios. Specification of the
security requirements is similar to the concept of
constraints specified by the current Jini security
model (http://davis.jini.org/). This permits the
specification of application independent security
requirements and allows better interoperability with
the current security model. The difference is that the
client requirements are not injected into a

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

72

downloaded proxy, but into the locally generated
verifier.
The notion of a locally generated verifier is central
to all of the proposed solutions. The operations that
the verifier performs, however, are different in every
variation of the algorithm. The entities employed in
all the solutions proposed here case are the
following:

• Client: The entity that wishes to use a
service. Clients need to be protected from
any potential hazards.

• Proxy object: Typically the object that is
downloaded by clients and used to access
services. Presents the major source of
incoming threats.

• Local Verifier: An entity generated by
clients before any interaction with
downloaded objects takes place. Used to
either verify proxy objects or isolate clients
from them.

• Service: The entity that lies somewhere in
the network and provides some
functionality. Services supply proxy objects
and should be considered untrusted.

In every proposed solution it is assumed that a
service has already discovered an available Lookup
Service and registered its proxy object. The client is
ready to perform discovery and lookup in order to
obtain a proxy object from the same Lookup
Service.

5.1 Proxy Verification Based on a
Local Generated Verifier

In order to verify that the downloaded proxy object
can be trusted, the following process is performed:
1. Before any discovery process takes place, the
client generates a local verifier
2. Client’s security requirements are injected to the
verifier by the client
3. The client performs discovery of the Lookup
Service and downloads a service proxy object
4. Before any interaction with the proxy takes place,
the proxy object is passed to the verifier
5. The verifier performs a series of security checks
according to the client requirements and makes a
decision on behalf of the client about the
trustworthiness of the proxy object
6. In case the verifier has decided that the security
requirements are satisfied, the client interacts with
the service through the proxy object as defined by
Jini programming model.

Figure 2: Proxy trust verification by a local verifier

The described process is illustrated in Figure 2.
Initially the client generates the verifier and specifies
the security requirements (1). The verifier performs
a series of tests to verify trust in the proxy object (2).
The result of the verification procedure is expressed
as a decision and the client gets notified (3). If the
proxy has been considered to be trustworthy, the
client is allowed to contact the proxy object (4) and
access the related service. Comparing this solution
with the default proxy verification algorithm, in both
algorithms the client is responsible for specifying the
type of security required. However, the entity that is
responsible for enforcing these requirements is not
an untrusted proxy object anymore, but a locally
generated verifier. The type of checks performed
and the way these are carried out is much more
transparent from the client’s point of view.
Moreover, clients do not have to rely on a verifier
object downloaded from a service since the process
of such object verifying the initial proxy object is
not clear to the client.
Therefore the problem of a service generated verifier
that performs no actual check to the proxy object,
resulting in the verification of a faulty proxy, is
eliminated.
Service providers also do not need to worry about
having to provide a bootstrap proxy and a verifier.
The only entity that services need to expose is the
default proxy object. Absence of a bootstrap proxy
eliminates the need for services to implement an
object based on the assumption that it would consist
of classes that the client already has. Moreover, the
current algorithm dictates that every time the
implementation of a proxy object changes, the
verifier object has to change as well, since proxy
verification is based on equality checking. Finally by
eliminating the need for services to produce two
additional objects (the bootstrap proxy and the
verifier), administration burden is removed from the
service provider.

TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY OBJECTS IN JINI

73

5.2 Restricting Proxy Object in a
Controlled Environment

1. Before any discovery process takes place, the
client generates a local verifier
2. Client injects to the verifier the security
requirements and the maximum amount of local
resources permitted for use by proxy objects
3. The client performs discovery of the Lookup
Service and downloads a service proxy object
4. The verifier provides a controlled environment for
the proxy object to run. Besides performing security
checks to the proxy object, the verifier ensures that
the proxy does not use more resources than
specified. All requests to and from the proxy object
pass through the verifier.
Figure 3 illustrates the followed process. The client
generates a local verifier and assigns the security
requirements as well as any resources that proxy
objects are permitted to use (1). After the proxy
object has been downloaded, it is passed to the
verifier. The verifier performs similar type of
security checks as in proposed solution 1, and
additionally provides a controlled environment
where proxy objects run. Any client requests and
any responses from the proxy object pass through
the verifier (2). The same is true for any
communication held between the proxy object and
its corresponding service.
The advantages of this solution are similar to those
of the solution proposed in Section 5.1. The need for
service providers to produce additional objects
besides the default proxy object is eliminated and so
are the assumptions relevant to the locality of classes
in the bootstrap proxy and the checks
performed by the service’s verifier. Moreover, by
restricting execution of the proxy object into a set of
finite resources, a protected environment
safeguarded by the verifier is created. Verification
does not occur only once, but the verifier is
monitoring the proxy object continuously. Therefore
any potential hazards that might take place during
the execution of the proxy are more likely to be
identified and get dealt with.

6 RELATED WORK

In (Eronen et. al, 2000) certificates are used to
establish trust between services and users. Secure
interaction is assumed, by allowing users and
services to interact only if they carry the appropriate
credentials, supplied by a security library. However,
these credentials must be assigned to every service
of the Jini community before any interaction could
be realised. That reduces the spontaneity that Jini
provides, and requires prior knowledge of the
services’ properties to exist, in order for the
appropriate permissions to be assigned correctly.
Trust establishment is also the purpose of
(Hasselmeyer et. al, 2000a). Trust establishment is
attempted between the Lookup Service, the service
provider and the client. The authors propose an
extension to the Jini architecture with a certification
authority, which provides certifications for the
authentication of components. Capability managers
are responsible for administering the rights for each
user. In that way, different access levels for each
client can be easily implemented. Their solution,
however, assumes that one central certification
authority exists, in order for the appropriate
certificates and capabilities to be distributed to every
Jini component that exists in

the system. Thus, a prior knowledge of every
service’s characteristics should exist something that
is not usually the case in Jini. Moreover, the
existence of a centralised authority is opposed to the
decentralised nature of the Jini technology. The
integration of authorisation and authentication
techniques in Jini is also examined in (Schoch et. al,
2001). The authors try to achieve that without
introducing any additional components, besides the
facilities that Jini and Java already provide. They try
to prevent man-in-the-middle attacks, by signing the
proxy object with a digital signature. This allows the
clients to authenticate the source of the provided
service, although it still can not be verified how the
service users the provided by the service data.

Figure 3: Verifier creation and interaction with the proxy object

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

74

7 CONCLUSION

We presented some security problems related with
Jini and how they are countered by the current Jini
security model. Our focus is placed in the proxy
trust verification algorithm since we believe that an
alternative way of verifying proxy object trust might
encounter some of the existing problems. We
presented our initial ideas in providing an alternative
way of ensuring that hostile proxy objects would not
impose any risk to clients of the system. We
sketched two different approaches in solving the
problem. Both involve the concept of a local
generated verifier that either verify a downloaded
proxy object or impose restrictions to that object’s
functionality. We also pointed out the advantages of
these solutions. Future work includes further
rectifying the presented concepts and come up with
a viable solution that would integrate with the
existing model. Also implement a working prototype
and test it in a real world environment.

REFERENCES

Eronen, P., Lehtinen, J., Zitting, J., and Nikander, P.,
2000. Extending Jini with Decentralized Trust
Management. In Short Paper Proceedings of the 3rd
IEEE Conference on Open Architectures and Network
Programming (OPENARCH 2000), pages 25-29. Tel
Aviv, Israel.

Hasselmeyer, P., Kehr, R., and Voß M. 2000a.Trade-offs
in a Secure Jini Service Architecture. In 3rd IFIP/GI
International Conference on Trends towards a
Universal Service Market (USM 2000), Munich,
Germany. Springer Verlag, ISBN 3-540-41024-4, pp.
190-201.

Java Authentication and Authorisation Service (JAAS)
http://java.sun.com/products/jaas/ [Accessed 10 Feb.
2004]

Jini specifications archive – v 2.0
http://java.sun.com/products/jini/1_2index.html
[Accessed 10 Feb. 2004]

Kagal, L., Finin T. and Peng, Y. 2001. A Delegation
Based Model for Distributed Trust. In Proceedings of
the IJCAI-01 Workshop on Autonomy, Delegation,
and Control: Interacting with Autonomous Agents, pp
73-80, Seattle.

Menezes, A., van Oorschot, P., and Vanstone S. 1996.
Handbook of Applied Cryptography. CRC Press.
ISBN: 0849385237

Rescorla, E. 2000. HTTP Over TLS, the IETF Network
Working Group http://www.ietf.org/rfc/rfc2818.txt
[Accessed 09 Feb. 2004]

Rivest, R. 1992. RFC 1321 - The MD5 Message-Digest
Algorithm, the IETF Network Working Group,

http://www.ietf.org/rfc/rfc1321.txt [Accessed 09 Feb.
2004]

Scheifler, Bob 2002. Comprehensive Network Security for
Jini Network Technology Java One Conference
Presentation , San Francisco, March 2002
http://servlet.java.sun.com/javaone/sf2002/conf/sessio
ns/display-1171.en.jsp [Accessed 15 Dec. 2003]

Schoch, T., Krone, O., and Federrath, H. 2001. Making
Jini Secure. In Proc. 4th International Conference on
Electronic Commerce Research, pp. 276-286.

Sun Microsystems Inc. 2003a. Jini architecture
specification.
http://www..sun.com/software/jini/specs/jini2_0.pdf
[Accessed 15 Dec. 2003]

Sun Microsystems Inc. 2003b. Jini architecture
specification.
http://wwws.sun.com/software/jini/specs/jini2_0.pdf
[Accessed 15 Dec. 2003]

http://www.jini.org/ [Accessed 11 Feb. 2004] The Davis
project http://davis.jini.org/ [Accessed 11 Feb. 2004

TOWARDS AN ALTERNATIVE WAY OF VERIFYING PROXY OBJECTS IN JINI

75

