
A SINGLE SIGN-ON PROTOCOL FOR DISTRIBUTED WEB
APPLICATIONS BASED ON STANDARD INTERNET MECHANISMS

Julian Gantner

Andreas Geyer-Schulz

Anke Thede

Information Services and Electronic Markets
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Keywords: single sign-on, cookies, Web authentication, Web services, cross-domain

Abstract: Growing e-commerce and personalized Web sites require users to set up many different personal accounts.
Personal data has to be entered many times and each user has to memorize different username and password
combinations. This reduces system security as users tend to either use passwords that are very easy to guess,
or they write them down, or they use the same password for many different accounts. It also increases the cost
of the administration of the user accounts.
We propose a protocol for a single sign-on system that allows users to visit multiple internet applications
having to login only once. The system is based on standard internet mechanisms. It is composed of different
servers that provide authentication and authorization services and is based on cookie technology. The system
is designed to be implemented in a heterogenous environment with independent and diverse service providers.
The communication between the servers is done via Web services. Additionally, plug-ins are available for
other protocols that allow for easy integration of existing authentication and authorization components. A
prototype system is operational at the Schroff Stiftungslehrstuhl Information Services and Electronic Markets.

1 INTRODUCTION

As more and more e-businesses and service providers
emerge on the internet and especially the World Wide
Web (WWW) the number of accounts and pass-
words a user has to handle and to remember increases
rapidly. Many providers require some type of identifi-
cation and personal data to offer their services. Users
either tend to re-use the same account name and pass-
word for many different providers or write their cre-
dentials down and even carry them with them to have
them always available. Both methods increase the risk
that a malicious person might get access to personal
data and abuse them which might cause an important
damage to the user as well as the service provider. In
addition, in decentralized organisations multiple user
accounts increase IT administration and service costs.

Single sign-on (SSO) systems offer the possibility
to use only one account for a multitude of distributed
services (Shirey, 2000). The user logs into one of the
services and is then able to access resources of other
service providers without having to re-authenticate.
The set of services for which SSO can be provided
is called the SSO domain. SSO systems mainly stem
from two sources, namely distributed operating sys-

tems and telecommunication infrastructure. Many
different systems like Kerberos (Steiner et al., 1988)
or Radius (Metz, 1999) have been developed that of-
fer single sign-on for a special kind of environment.
SSO solutions for distributed Web applications are
special because they have to be based on standard in-
ternet mechanisms in order to be deployable. A multi-
tude of user clients (Web browsers) exists on the mar-
ket and there is no control over the choice of which
browser a user decides to use.

Besides the most often stated field of e-commerce,
universities are a very promising domain of setting up
SSO environments (Murawski, 2000; Anchan and Pe-
gah, 2003). Nowadays extensive user profiles of stu-
dents, teachers, and researchers are kept digitally and
e-learning platforms and administrative systems re-
quire digital transmission of data. Universities not of-
fering their students an online time-table system and
access to lecture materials are even considered not to
be up-to-date. Universities still represent a very het-
erogeneous system where each institute has already
made its proper choice of platform and applications.
It is difficult to impose common standards and proto-
cols on these independent entities. Thus, to success-
fully implement an SSO system in such an environ-

191
Thede A., Geyer-Schulz A. and Gantner J. (2004).
A SINGLE SIGN-ON PROTOCOL FOR DISTRIBUTED WEB APPLICATIONS BASED ON STANDARD INTERNET MECHANISMS.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 191-198
DOI: 10.5220/0001400201910198
Copyright c© SciTePress



ment it must be able to integrate different types of ex-
isting systems and rely on standard mechanisms that
can easily be adopted by different kinds of proprietary
platforms.

We propose a single sign-on system for cross-
domain authentication based on standard internet
mechanisms that is designed in order to integrate vari-
ous types of existing user accounts and user databases
of service providers. The strength of our system lies
in the clear separation of user credentials and user
profiles from role assignment and access permission
information. The communication between the differ-
ent components of our system is based on standard-
ized protocols to which existing applications can eas-
ily be adapted. The choice of policies is left to the
service providers who can choose their level of trust
towards other system components.

In the following sections, we first present our sys-
tem and describe its functionalities. After that we dis-
cuss the characteristics of our system and compare it
to other related systems for Web authentication.

2 PRESENTATION OF THE
SYSTEM

authentication
servers

application
servers

user
client

cookie
server

http

http

web service

web service

authorization
server

domain 2

authorization
server 

domain 1

user DB
domain 2

user DB
domain 1

internal
communication

protocols

internal
communication

protocols

(1) (2)

(3) (4)

Figure 1: Components of the SSO system and communica-
tion links, dashed link: not necessarily secure

The components and their communication protocols

are shown in fig. 1. The system consists of one or
multiple application servers that contain the Web ap-
plications a user wants to access. The application
servers can reside in different domains. One or multi-
ple authentication servers handle the authentication of
the user. They can access one or more user databases
where one database contains the data for one specific
user domain. The authentication server is allowed
to query only the credentials needed to authenticate
the user (typically username and password, link (1)
in fig. 1). The user database may contain additional
personal data about the user which are only accessi-
ble by the application servers in the corresponding do-
main (link (3)). For each user database domain there
is an authorization server that contains the role and ac-
cess information for each user. Two kinds of roles are
available: public roles are valid across domain bor-
ders and can be accessed by the authentication server
(link (2)). Local roles are restricted to the respec-
tive domain and may be queried only by application
servers of the corresponding domain (link (4)).

The cookie server is the last element of the system.
It contains information about the currently valid cook-
ies, the corresponding users, and their public roles.
The authentication servers may insert and delete en-
tries in the cookie server database whereas application
servers only perform entry look-ups. The description
of the role system is not within the scope of this paper.

The communication between the user client and
the application servers depends on the application re-
quirements, it may or may not be secured. The re-
maining communication channels have to be secured
as they carry sensitive data. The communication be-
tween the servers is mainly realized by the means
of Web services over an SSL (secure socket layer)
connection. Web services ease cross-domain access
as they only require a standard HTTP connection.
The communication with the user databases and the
authorization servers may be adapted to the specific
type of the underlying system (e.g. kerberos, secured
Web service). Different plug-ins in the authentication
servers offer customized communication. This allows
for integration of Web applications with already ex-
isting authentication and authorization schemes.

2.1 Single sign-on procedure

Now how does the system offer single sign-on for
multiple cross-domain applications? The procedure
is the following (see also fig. 2, the letters refer to the
messages in the figure):

1. The user is not logged on to any application. He
sends a request for a service to application server
app1 (a).

2. app1 cannot identify the user as no application
server cookie is sent with the request. It there-

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

192



authentication
server auth1

user
client

cookie
server

user data-
base udb1

a) request service

authorization 
server

application
server app1

c) redirect to auth1 (app seq, source url)

c) set app cookie (app seq)

d) request login (app seq, source url)

e) login page

f) post username, domain, password
g) check password (username, password)

h) password ok

i) get public roles (username)

j) public roles

l) new entry (username, domain, app seq, auth seq, roles, udb1)

m) confirmation page & redirect to source url

m) set auth cookie (auth seq, auth1)

k) generate
new auth seq

b) generate 
new app seq

n) request service (app cookie)
o) get username and roles (app seq)

p) username and roles

s) service

q) get local roles, access permissions (username, service)

r) local roles, access permissions

Figure 2: Sequence diagramm of SSO procedure at first login

fore sends a redirection to one of the authentica-
tion servers, say authentication server auth1. The
redirection contains the URL of the originally re-
quested application page and a randomly generated
sequence of characters, the application sequence.
The application sequence is also included in the ap-
plication cookie that is sent back to the user along
with the redirect request (b, c).

3. auth1 requests the credentials from the user con-
sisting of a username, a password, and a domain
(d, e). The credentials are transmitted over a secure
connection (f).

4. auth1 contacts the user database corresponding to
the given domain to verify the correctness of the
credentials (g). Once the verification succeeds (h)
auth1 retrieves the public role information for this
user from the domain’s authorization server. The
roles are matched by means of the user name (i, j).

5. auth1 randomly generates another sequence of

characters, the authentication sequence (k). The se-
quences have to be long enough such that the prob-
ability of a malicious user reproducing a valid se-
quence by random trial is sufficiently small. The
two sequences, the user name and domain, the list
of public roles, and the name of the user database
are transmitted to the cookie server who saves the
information in its database (l).

6. An authentication cookie containing the authenti-
cation sequence and the identification of auth1 is
created and transmitted back to the user along with
a login confirmation page. The page displays for
some seconds and then redirects back to the origi-
nating application URL (m).

7. The user now has two cookies set: the application
cookie and the authentication cookie. Upon the fol-
lowing request to app1 the application cookie is
transmitted (n). app1 extracts the application se-
quence from the cookie and requests the user infor-

A SINGLE SIGN-ON PROTOCOL FOR DISTRIBUTED WEB APPLICATIONS BASED ON STANDARD INTERNET
MECHANISMS

193



authentication
server auth1

user
client

cookie
server

user data-
base udb1

a) request service

authorization 
server

application
server app2

c) redirect to auth1 (app seq2, source url)

c) set app cookie (app seq2)

d) request login (app seq2, source url)
e) find user (auth seq, app seq2)

h) confirmation page, redirect to source url

b) generate 
new app seq

i) request service (app cookie)
j) get username and roles (app seq2)

g) entry ok

n) service

d) send auth cookie

f) new entry(username, domain,
app seq2, auth seq, roles, udb1)

k) username and roles

l) get local roles, access permissions (username, service)

m) local roles, access permissions

Figure 3: Sequence diagramm of SSO procedure at cross-domain service request

mation from the cookie server (o).

8. The cookie server finds the existing entry contain-
ing the application sequence in its database and
transmits the user name and his public roles to app1
(p). app1 may now look up local roles and access
rights in the domain’s authorization server and may
deliver the requested service (q – s).

The user can now easily access services from all
application servers in the domain of app1 as the cor-
responding application cookie is always included in
the requests. If a user now requests a service from a
server residing in a different domain (say app2) the
application cookie is not sent along with the request
and the user is not recognized as logged in. The fol-
lowing steps are then performed (see fig. 3 and corre-
sponding message numbering):

1. The user accesses app2 without an application
cookie (a). The server generates an application se-
quence (b) and redirects the user to auth1, setting
the second application cookie (c).

2. auth1 extracts the authentication sequence from the
transmitted cookie (d) and requests the associated
user information from the cookie server. The re-
quest also includes the new application sequence
(e).

3. The cookie server finds the user associated with the
authentication sequence and adds another entry in

its database differing from the first only in the new
application sequence (f, g).

4. auth1 redirects the user who has now three cookies
set back to the originating URL of app2 (h). app2
can now identify the user as described in the last
two steps of the previous procedure (i – n).

In this scenario app2 uses the same authentication
server (auth1) as app1. But the system allows for sev-
eral authentication servers in one SSO domain and
each application server may choose which authen-
tication server to use. For different authentication
servers to recognize the user as logged in it is nec-
essary that they be able to have a valid authentication
cookie transmitted. As cookies (Kristol and Montulli,
1997) may not be set on behalf of other servers the
following work-around is deployed. Each authentica-
tion server maintains a list of the other known authen-
tication servers. After the first successful login the
confirmation page displayed to the user contains for
each other authentication server an HTML image tag
including the authentication sequence and the name
of auth1. The requests sent to the other servers al-
low them to set an own authentication cookie with
the same authentication sequence. In reply to each
request each authentication server delivers a transpar-
ent pixel image. Now the user can be recognized as
logged in by all other authentication servers, as well.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

194



However, steps 7 and 8 may increase the network
traffic considerably as a request is sent to the cookie
server upon each service request to an application
server by a user. In order to minimize the network
traffic and to increase the performance of the system
the application server may locally cache the associa-
tion of the application sequence to the username and
roles. This design decision needs to be carefully con-
sidered with respect to the global logout procedure
and its implications are discussed in the following
section.

2.2 Global logout

When the user logs out of one of the applications with
which he is logged in (and of which he consequently
possesses an application cookie) the logout has to be
propagated to all other applications in the SSO do-
main, as well. Upon logging out the user is redi-
rected to the authentication server. The authentication
server sends a request to the cookie server to delete
all entries containing the authentication sequence in-
cluded in the authentication cookie. The authentica-
tion server sends a logout confirmation page to the
user and deletes his authentication cookie. To delete
the authentication cookies of all other authentication
servers with which the user is currently registered the
confirmation page contains again transparent images
pointing to logout links of the other servers. Upon
sending the images the other authentication cookies
can be deleted, as well. If the user now accesses an
application the application server will fail to find the
corresponding entry in the cookie server and conse-
quently can delete the application cookie. This is the
standard case as described in the previous section.

If the application server uses caching to minimize
network traffic the following two options of cache in-
validation are possible:

1. The cache entries are only valid for a limited time
and the application server checks the entries with
the cookie server on cache expiration (variant 1).

2. The logout message is propagated to the applica-
tion servers. This possibility is also employed in a
similar manner in Microsoft’s Passport SSO proto-
col (Microsoft Corporation, 2004b). It consists in
keeping track of all applications the user is logged
in with in the current session and to include trans-
parent image requests for cookie deletion in the lo-
gout confirmation page, as well. The cookie server
could easily keep track of the applications as a sep-
arate entry for each application sequence already
exists. This would allow the application servers
to locally cache user information and avoid subse-
quent requests to the cookie server while still vali-
dating the global logout without delay (variant 2).

2.3 Public roles

Each user can be associated with several public and
private roles. Public roles are valid across all applica-
tions in the SSO domain whereas private roles are lo-
cal to an application or domain. A user’s public roles
are contained in the cookie server entries and can be
read by all applications the user accesses. Each ap-
plication may decide on its own whether to trust the
validity of a public role.

Public roles can be used to identify users and user
groups and their corresponding access rights across
different applications. For example, if a student
worker logs in at the site of the department where
he works he may be assigned the private role “stu-
dent worker” and the public role “student at faculty of
mathematics”. If he subsequently accesses the Web
page of the faculty of mathematics he is recognized as
a valid student by means of the public role and may
be granted access to lecture material without the need
to re-authenticate.

Public roles could also be used to identify single
users across different domains without the need to ex-
change user names or to issue globally unique user
identifiers. Each user may be assigned a public role
corresponding e.g. to his matriculation number. With
this information each student can be identified by all
university applications whose user databases contain
the matriculation numbers of their users.

2.4 Failure of servers

For a single sign-on system it is important to note
which of the participating servers constitute single
points of failure. Unavailablilty of a server that pro-
vides necessary information to perform login func-
tionality means that all services that require login and
access control become unusable. It is therefore de-
sirable to have different servers that are able to pro-
vide the same functionality. A slow authentication
system due to increased server load is still preferable
to a completely non-functional system.

In the system described in this paper the authen-
tication server does not constitute a single point of
failure. Many different authentication servers may be
set up and as long as one of the authentication servers
that an application server knows is functional the lo-
gin can be performed. If an authentication server is
temporarily not available this may result in a broken
image tag displayed on the login confirmation page
after a timeout but the login is still completed.

If a user database or an authorization server breaks
down applications in the corresponding domain can-
not be accessed but the other domains are not af-
fected. In the current implementation only the cookie
server as the only central component constitutes a
single point of failure. By replication of the cookie

A SINGLE SIGN-ON PROTOCOL FOR DISTRIBUTED WEB APPLICATIONS BASED ON STANDARD INTERNET
MECHANISMS

195



server’s database and network interfaces this risk can
be avoided, respectively reduced to a minimum. Mir-
ror cookie servers do not increase the vulnerability of
the overall system as the cookie server does not con-
tain extremely sensitive data (like credentials, credit
card information etc.). The sequences contained in
the cookie server are only valid for a single session.
To avoid replay of valid sequences in case that a ma-
licious person gets access to the contents of a cookie
server these could be stored encrypted either in the
cookies or in the cookie server.

2.5 Scalability

For a single sign-on system to be practically relevant
scalability is an important factor. An SSO system
must be able to handle a large number of users, ac-
counts, and applications without being considerably
slowed down.

Looking at our solution, what does a large number
of accounts and users imply?

• Accounts and their authorization information have
to be stored in the user databases and authoriza-
tion servers. As the system is already designed to
have separate servers for each domain application
specific scalability is not affected by the SSO pro-
cedure.

• The bottleneck of the current application is the
central cookie server. The size complexity of the
database is of the order number of currently logged
in users · number of currently used applications.
The number of concurrent users usually is only a
small fraction of the total users, the same is true
for the applications so that currently available data
base systems should be able to accomodate cookie
data both with respect to size and response time.
The requests to the cookie server are all of the
same structure such that efficient indexing tech-
niques can be deployed. Tests with a single LDAP
server containing about 25 million entries showed
no performance degradation.

• Another important point is the amount of network
traffic to and from the cookie server. For each lo-
gin to a new application two requests to the cookie
server are necessary (see fig. 2 and 3). The global
logout requires one request for each authentication
server the user logged in with. However, the most
important amount of requests is generated at each
access to an application service as the application
server verifies the validity of the transmitted ap-
plication cookie. These requests can be reduced
or even avoided using the caching schemes as de-
scribed in sec. 2.2 such that only a manageable
amount of network traffic is left. Currently, the
variant 1 described in sec. 2.2 is implemented.

2.6 The Role of Cookies for SSO

Building essential infrastructures on cookies has
some important drawbacks. Many internet users have
privacy concerns and do not want to use cookies,
they can simply disable the cookie mechanism locally
within their internet browser. There are also some se-
curity issues as cookies can on the one hand be mod-
ified by the user and on the other hand they may pos-
sibly be read or replayed by a third party. For a dis-
cussion on cookie security see e.g. (Samar, 1999).

Nevertheless, any SSO solution requires some sort
of state management and user identification that can-
not be provided by the stateless HTTP. Several possi-
bilities exist to maintain information across multiple
HTTP requests. An often used method is to include
session information in the URLs, either as part of the
query string or as an integral part of the URL itself.
In contrast to cookies this does not require any data
to be stored in files on the user’s computer. This solu-
tion works very well for session management in one
domain but it poses some problems when applied to
cross-domain services. Each web server in an SSO
domain would have to take care of including applica-
tion and authentication sequences only in the URLs of
the corresponding server. Otherwise sequences would
risk to be exposed to third party websites who would
be able to replay this information. Second, in our sce-
nario web servers that issue redirect requests would
have to have knowledge of the sequences that corre-
spond to the redirect target server. In fig. 3, consider
message (c). app2 would have to include the authenti-
cation sequence of auth1 in the redirect request. This
requires additional transfer of sequence information
over the network which means additional exposition
of sensitive information to possible attackers. Thus
we can see that replacing cookies with URL encoded
sequences introduces additional security threats.

Keeping track of session information by using the
user’s IP address generally poses problems because of
the use of proxy servers and network address transla-
tions, as well as the use of public terminals by many
different users. Identification of the user through
HTTP authentication also does not work for cross-
domain scenarios. Other solutions require the user
to install additional, specialized software and are no
longer based on standard Internet mechanisms.

In general, privacy and single sign-on services are
contradictory requirements that are difficult to com-
bine. To minimize scepticism it is important to pro-
vide the user detailed information about what is stored
in the cookies and what they are used for. Further-
more, an SSO solution based on cookies can still offer
privacy concerned users alternative login mechanisms
without cookies if they are willing to renounce single
sign-on and log on to every service separately. In the
current version, however, this is not yet implemented.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

196



3 RELATED SYSTEMS

Many different solutions have been proposed in recent
years for offering single sign-on in different environ-
ments (de Laat et al., 2000; Volchkov, 2001). Many of
them are not transferable to a heterogeneous and dis-
tributed Web environment as they require a central-
ized structure of the involved components and com-
mon protocols. Other systems work with clients that
are required to have additional functionality (Pfitz-
mann and Waidner, 2003) which we do not consider
to be a realizable approach in the World Wide Web
environment. In the following, we give an overview
over the three solutions known to us regarding single
sign-on for Web applications and compare the sys-
tems with our solution.

Microsoft’s .NET Passport system (Microsoft Cor-
poration, 2004b; Kormann and Rubin, 2000) is the
largest functional single sign-on solution with 200
million accounts performing approximately 1350 au-
thentication requests per second (March 13, 2003,
(Microsoft Corporation, 2004a)). The system consists
of a central Passport server that contains and man-
ages all user accounts and corresponding user infor-
mation and performs the authentication. Each user
has a unique identifier. If a user has logged on to
Passport from a service provider’s site he can sub-
sequently visit sites of other businesses adhering to
Passport and is recognized by his unique identifier.
The Passport server as well as the service providers
set transient (session-only) or persistent cookies to
recognize the user as already logged in. The cook-
ies contain credential information about the user. A
global logout from all Passport accounts is realized
by including logout requests to all services the user is
currently logged in with (and of which he possesses
valid cookies) in HTML image tags.

The main difference between Passport and our so-
lution is Passport’s central authentication and user
database server. This server is a single point of failure,
if the service breaks down all businesses using Pass-
port are unavailable to the users. It is not stated which
measures are taken to offer scalability and backup
servers. Possible dangers of replicated databases are
discussed in (Kormann and Rubin, 2000). Our solu-
tion works with different, distributed authentication
servers and integrates multiple, local user databases
without requiring a separate, unique identifier. Iden-
tification across multiple domains may be realized
at different levels by the means of public roles. No
credential information is stored in local user cookies
which may potentially be modified by the user him-
self and is not well protected against access from in-
truders.

The Liberty Alliance Project (Liberty Alliance
Project, 2003) was formed in September 2001 by an
association of several major companies in order to

specify open standards for federated network iden-
tity management. The architecture (Liberty Alliance
Project, 2003) allows for each service provider to
maintain its own user database and user identities. A
user who wants to use single sign-on between service
providers with different identities may select to fed-
erate these identities between the service providers
who are now able to match the foreign identity to their
own. Without federation the user has to separately log
into each service provider. The decision of whether to
trust a user logged in with a different, federated iden-
tity remains the service provider’s local policy. Iden-
tity providers take the role of the authentication server
and the cookie server in our scenario, they use cookies
to maintain a user’s login state.

Like our solution, the Liberty architecture allows
for integration of existing user databases and accounts
of different service providers. The choice of whether
to trust a federated identity can be made locally by
each service provider, like it is the case with the pub-
lic roles introduced in our system. The server ar-
chitecture is nevertheless different. Liberty does not
state whether SSO is possible across multiple identity
providers and does not distinguish between authenti-
cation server and cookie server. Having the possibil-
ity to choose a nearby authentication server reduces
the route length over which passwords and other cre-
dential information have to be carried to a minimum
whereas no such sensitive data has to be transferred to
and from the cookie server. Data have to be transmit-
ted between the cookie and the authentication server
only upon an initial service provider login. It is there-
fore useful and improves the security of the system to
introduce this flexibility without having an important
impact on the overall system performance.

Samar (Samar, 1999) proposes different proto-
cols for cookie-based single sign-on. For cross-
domain authentication, he introduces two centralized
servers, a cookie server and a login server. The login
server contains the authentication information about
all users in the SSO domain and recognizes signed-in
users by means of a login server cookie. The cookie
server contains information about the different Web
application cookies. Samar does not give detailed in-
formation about the possibility of a global logout in
this scenario.

Samar’s approach does not offer the integration of
decentralized user databases and introduces two sin-
gle points of failure, namely the login and the cookie
server. The approach is similar to Microsoft’s Pass-
port except that Passport integrates the two different
server types in one central server. Authorization is
done locally at the service providers.

A SINGLE SIGN-ON PROTOCOL FOR DISTRIBUTED WEB APPLICATIONS BASED ON STANDARD INTERNET
MECHANISMS

197



4 CONCLUSION

In this paper we propose a single sign-on system ar-
chitecture based on standard HTTP mechanisms for
distributed, cross-domain Web applications. The sys-
tem allows for integration of distributed, proprietary
user databases and authorization servers. User ac-
counts need neither to be centralized nor to be expli-
citly exposed to other service providers in order to
provide SSO services. Public roles offer a flexi-
ble mechanism to transport user information across
different domains while leaving the final decision
of whether to accept public roles to the single ser-
vice providers. The system works with multiple,
cross-domain authentication servers and a centralized
cookie server. Different possibilities for implement-
ing a global logout are proposed. We compared the
system to other, well-known propositions and solu-
tions for offering cross-domain single sign-on in a
world wide Web environment and discussed similar-
ities and differences between the systems as well as
advantages and drawbacks.

The prototype system is already functional over
different domains at the department Information Ser-
vices and Electronic Markets. To test the system
please visit http://demo.em.uni-karlsruhe.de/sso/ and
http://sso.itloesungen.com/, log into one of them as
indicated on the login screen, and test the system
by visiting the other. First experiences with the sys-
tem revealed no major difficulties concerning usabil-
ity and the initial user reaction towards the single
sign-on service was very positive.

The next step is to integrate other domains of uni-
versity institutes and departments, affiliated compa-
nies and student organisations to test the system at
a larger scale and to identify possible improvements
especially concerning the adaption of proprietary sys-
tems into the SSO environment. Further research will
be directed towards the analysis of various attack sce-
narios and on role contracting models.

REFERENCES

Anchan, D. and Pegah, M. (2003). Regaining single sign-on
taming the beast. In Proceedings of the 31st annual
ACM SIGUCCS conference on user services, pages
166 – 171.

de Laat, C., Gross, G., Gommans, L., Vollbrecht, J., and
Spence, D. (2000). RFC 2903: Generic AAA Archi-
tecture. Network Working Group.

Kormann, D. P. and Rubin, A. D. (2000). Risks of the
passport single signon protocol. Computer Networks,
33:51–58.

Kristol, D. and Montulli, L. (1997). HTTP State Man-
agement Mechanism. Network Working Group RFC
2109.

Liberty Alliance Project (2003). Liberty Architecture
Overview v1.1. Technical report, Liberty Alliance
Project. http://www.projectliberty.org.

Metz, C. (1999). AAA protocols: Authentication, autho-
rization and accounting for the internet. IEEE Internet
Computing, 3(6):75–79.

Microsoft Corporation (2004a). Microsoft .NET Pass-
port for Businesses. http://www.microsoft.com/-
net/passport/services/business.asp, accessed Feb 25,
2004.

Microsoft Corporation (2004b). .NET Passport Review
Guide. Technical report. http://www.microsoft.com/.

Murawski, R. (2000). Centralized directory services and
accounts management project. In Proceedings of the
28th annual ACM SIGUCCS conference on User ser-
vices: Building the future, pages 198 – 201.

Pfitzmann, B. and Waidner, M. (2003). Analysis of lib-
erty single sign-on with enabled clients. IEEE Internet
Computing, 7(6):38–44.

Samar, V. (1999). Single sign-on using cookies for web ap-
plications. In Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 158–163. IEEE.

Shirey, R. (2000). Internet security glossary. Network
Working Group RFC 2828.

Steiner, J. G., Neumann, B. C., and Schiller, J. I. (1988).
Kerberos: An authentication service for open network
systems. In Usenix Conference Proceedings, pages
191 – 202.

Volchkov, A. (2001). Revisiting single sign-on: A prag-
matic approach in a new context. IT Professional,
3(1):39–45.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

198


