
INTERNET, WIRELESS AND LEGACY INTEGRATION 
Architectural Framework for Testing 

Nenad Stankovic 
Nokia, Burlington, MA 01803 

Keywords: Internet, wireless, PSTN, testing, distribution 

Abstract: Voice and data networks require performing components of highest quality. To achieve these goals software 
engineering employs testing. However, software performance and performance testing have been less 
studied and reported on. We present here the test-bed developed and used in performance and stability 
testing of the intelligent networks integration infrastructure. We used the Visper framework for rapid 
distributed application development to build our test-bed. We also report on common programming 
problems that have been identified in multiple applications written in Java, and on the experience with our 
test-bed. Our findings are based on the work and feedback provided by experienced professionals with a 
solid object-oriented background. Their experience with Java and J2EE was mixed, while the test-bed and 
the concepts of distributed programming were new to everyone involved. 

1 INTRODUCTION 

Over the last decade the Internet has become an 
everyday source of information, entertainment, 
messaging, and many business services for millions 
of users and companies around the world. Although 
omnipresent, the Internet has an important drawback 
due to its restriction to a location. Similar to the 
making of a Public Switched Telephone Network 
(PSTN) call, the lack of mobility restricts where 
those services can be accessed and content 
consumed. With the proliferation of wireless 
telephony, there is a widespread need for content to 
also go wireless and become accessible via mobile 
devices. The drive towards convergence of mobile 
devices and the Internet to accommodate anytime, 
anywhere access to multimedia communications is 
resulting in new services for the user and new 
business opportunities for the operator. 

Each of the mentioned networks has its own 
characteristics and technologies as historically and 
physically their evolution was independent of the 
other domains, and their design was driven by 
different requirements. In the world of modern and 
integrated communications it is essential to deliver 
targeted and timely information and quality services, 
development of which is driven by customer needs. 
For seamless and reliable end-to-end services it is 
required to secure transparent, performing and high 
quality interconnect among these networks. In turn, 

interoperability between them and communication 
between end users across domain boundaries 
requires elegant solutions on the technical level. 
From an overall perspective, ultimately, it should 
appear as if there is only one unified network. 

Although the separate domains of wireless, 
computer and wired telephony networks remain with 
their individual characteristics, recently they became 
integrated together. To enable such a seamless 
interoperability between key applications, network 
domains, and the user identity and addressing 
(Figure 1), we have developed a multidomain 
integration infrastructure based on open standards, 
technologies, and relevant initiatives. As a result, the 
user is not concerned with the underlying domain 
technologies and directly enjoys the richness of the 
supplied services and content irrespective of the 
access technology and methods as much as possible. 
In the same time, convergence between the same 
services regardless of their service providers has 
been progressing by addressing harmonization 
requirements for service technologies. These 
services and implementation should also not be tied 
to any proprietary or domain specific technology. 

213
Stankovic N. (2004).
INTERNET, WIRELESS AND LEGACY INTEGRATION - Architectural Framework for Testing.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 213-220
DOI: 10.5220/0001398602130220
Copyright c© SciTePress



 

 

Figure 1: Networks Interoperability 
 
The internetworking infrastructure, as dictated 

by the domains it integrates, is characterized by high 
availability, scalability, and reliability, while its 
usage pattern can change rapidly and dramatically in 
time. Therefore, it must be extremely dynamic, 
reactive, robust, and capable of handling thousands 
of different types of requests concurrently. Its 
performance must be predictable, stable under a 
wide range of loads, and ensure quality of service 
(QOS), all in the same time. To build this 
infrastructure is a formidable technical task which 
requires highly developed skills, and rapid 
development techniques through composability and 
component reuse. Subsequently, functional and high 
volume stability and performance testing is 
conducted. Testing is labour and resource intensive. 
On large software projects it often amounts to 
between 50 and 60 percent of total software 
development cost, even without factoring in the cost 
of purchasing equipment for testing. Without 
constantly performing quality testing throughout a 
whole software lifecycle the risk of the project being 
unable to meet the requirements within the given 
time and budget constraints is greatly increased. 

This paper is primarily concerned with 
performance testing of hardware and software 
required by this infrastructure. In principle, 
performance testing is conducted as end-to-end 
black box application testing where test cases are 
derived from the use cases and functional 
specification. We augment the tests used in 
functional testing by generating input load that is 
function of time, content and user actions. A 
problem with testing such a heterogeneous 
collection of applications is that we need many 
different tools in the process. Commercial tools are 
not only expensive, but different tools apply 
different techniques in setting up test cases. They 
often lack portability and generate results that are 
not easy to correlate and reproduce with other tools. 

More importantly, it may be hard to calibrate them 
and generally impossible to customize, and optimize 
their performance. For example, the capture and 
replay tool always picks up the attachment file from 
disk, rather than from an in memory cache. On the 
other hand, test programs are structured similarly 
and are relatively easy to code if not sophisticated. 

Based on these premises we can derive a generic 
and extensible test-bed that facilitates development 
of test programs and setting up of test cases, and 
resolves the mentioned problems. By reusing proven 
software artefacts new projects and tasks do not 
have to reinvent and rediscover what was already 
accomplished before. The mentioned characteristics 
were successfully implemented and evaluated by 
building a large-scale test-bed based on Visper 
(Stankovic, Zhang, 2002). Visper is a distributed 
programming framework that provides constructs at 
programming language level that allow 
programmers to directly transfer architectural and 
domain specific decisions into an implementation. 
The architectural model of Visper has proven easy to 
adopt and suitable for rapid prototyping, and 
application deployment. Its runtime image is small 
in size, efficient in speed. The cost of overhead of its 
distributed and local services when integrated into 
an application is low and constrained mainly by the 
standard low level mechanisms provided by Java 
(Campione, et al., 2000), such as the java.io and 
java.net packages. Visper is scalable and extensible 
to support new applications and programming 
models that require the provided services and 
abstractions. 

The paragraphs that follow first introduce the 
intelligent networks integration infrastructure. 
Section 3 motivates the test-bed and describes the 
main patterns that can be found in performance and 
stability testing. We also briefly describe Visper and 
the components that were used to accomplish this 
task. Section 4 presents a complex test case example 
that involves main infrastructure components, as 
well as much of the functionality built into the test-
bed in order to drive such a performance and 
stability test. Section 5 summarizes our findings and 
experience with the infrastructure, Java, and test-
bed, and Section 6 correlates our and similar 
research work. Section 7 concludes the paper. 

2 INTELLIGENT NETWORKS 
INTEGRATION 

As shown in Figure 2, the applications that support 
the seamless and intelligent integration of the 
Internet, and wireless and wired telephony 
implement a number of gateways (GW) and service  

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

214



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Intelligent Networks Integration 
 
centers. The reason is that historically these domains 
have evolved independently, and are based on 
standards that are not compatible, not needed or not 
found in the other domains. While the basic 
infrastructure requirements are familiar (e.g. billing, 
content encoding and conversions, transient and 
persistent message repository, notifications), the 
number of specialized conversion services (e.g. JPG,  
GIF, AIF, BMP, WBMP, WAV, AVI, MOV) and 
protocols (e.g. HTTP, HTTPS, SMTP, SS7 (SS7), 
T1 (T1), TCP, WAP (WAP)) required is rather large, 
which has dictated their separation into multiple 
applications that may be enabled or disabled as 
necessary. 

Therefore:  
– The MMSC (Multi-Media Service Center) is the 

point of connectivity into and from the wireless 
domain. Its main role is to receive multimedia 
messages, provide temporary storage and to 
attempt to forward the messages to the receivers 

– Multimedia Message Service (MMS) delivery to 
an email address requires that the MMSC 
communicates with an existing email server. The 
multimedia Email GW provides the connectivity 
between these end points, together with the 
routing of messages based on content and 
identity 

– The Terminal Gateway enables delivery of MMS 
messages to legacy terminals. It stores MMS 
message content in its own local storage, and 
sends an SMS to the receiver, informing the user 
of a Web address where the content can be 
viewed via a Web browser. The Terminal GW 
also provides users with an album for messages 
and images. These images can be used to create 
a new MMS message either on the phone or in 
the browser 

– The Voice GW supports unified messaging and 
intelligent call routing in all three domains, such 
as Voice over Internet Protocol (VoIP), PSTN 
voice, and advanced speech recognition. Instead 
of receiving a textual notification, the voice 
message can be encapsulated as an MMS and 
sent directly to the phone 

– Content conversion is important when an image 
has a format that is not supported by the 
recipient. The MMSC routs the MMS to a 
content converting application, after which the 
new message is sent forward 

– The WAP Gateway receives a MMS from the 
wireless device via a WAP Post, and transmits 
the MMS from the MMSC to the wireless 
devices via a WAP Get 

 

INTERNET, WIRELESS AND LEGACY INTEGRATION - Architectural Framework for Testing

215



 

The Email, Terminal and Voice GWs are known 
as external applications to the MMSC. They have 
been developed in Java and J2EE (J2EE, 2003), 
while the other applications are based on C and C++ 
with significant embedding into the architecture for 
performance reasons. 

3 TEST-BED 

The development work on these applications has 
been conducted in parallel, as has been the testing 
work performed both by development teams and 
QA. This program organization requires not only 
dedicated computing resources for development and 
testing, but also requires special tools to conduct the 
testing. Even without such a large suite of products, 
the cost of commercial testing tools and hardware 
would be significant and most likely unacceptable if 
unrestricted access is granted to everyone involved. 

On the other hand, the software developers are 
required, while coding, to produce test programs and 
test their classes for functional correctness, stability 
and performance. Initially there was no standard for 
designing, writing, executing, and managing test 
artifacts that would facilitate reuse and controlled 
experimentation. Although programmers spent a 
good portion of their time on writing test programs, 
generally that part of their work was not reused by 
their colleagues or shared. Test programs have been 
developed and executed locally on a PC, due to 
unavailability of dedicated UNIX workstations for 
individual testing and development work. 

3.1 Requirements 

To resolve these shortcomings in the testing process, 
a number of possibilities were explored, and Visper 
was selected due to the following perceived 
advantages: 
– Simple yet powerful model that can be adopted 

quickly, with low level classes that support 
process control and configuration for rapid 
definition of test cases and test profiles for 
performance and stability testing 

– Does not require significant additional 
programming skills. Test scripts are organized as 
text files, with attribute-value pairs, and they 
support nondestructive attribute redefinition. 
Reuse of software is mandatory 

– Easy and safe sharing of computing resources 
between programmers. Since programs in Visper 
are executed on dedicated sessions, users are 
shielded from any adverse impact that other 
users can exert upon them 

– Dynamic configurability and transparent 
reassignment of resources. Test machines have 
been a scarce resource, and often reallocated and 
reconfigured. It is not acceptable to constantly 
update and rebuild test programs after each 
change in the laboratory setup 

– Does not require special configuration files and 
multiple copies of the same process, that 
unnecessary overloads the testing machine. A 
cold restart only affects that session, and 
deployment and redeployment is dynamic from 
multiple network nodes 

– Scalability that allows executing thousands of 
user profiles and multitude of test cases 
concurrently, without a programming 
intervention 

– Test artifacts are organized in a directory 
structure on a per test case basis and under a 
versioning control, as to ensure reusability and 
reproducibility of experiments 
Programmers were introduced to the test-bed in a 

1 day get started course in which they were thought 
about the relevant concepts, tools, components, how 
to code and execute test programs, and prepare and 
configure tests in a distributed environment. 

3.2 Patterns 

Test programs are often not complex to code, but 
still require a considerable amount of time to prepare 
if sophisticated. This, however, does not address 
refinements, potential distribution and scalability 
issues. Without guidance from an existing body of 
work, the test case implementer must engineer a 
solution from scratch, and on a case by case basis. 
Architecture plays a central role in software 
engineering by developing high level views of the 
system, and defining models, components and 
guidelines for composing systems. Further, software 
engineering has recognized patterns as a means to 
capture common and proven design concepts, to 
protect and reuse them (Bruegge, Dutoit, 2004). 
Patterns can be adapted before being used, either by 
wrapping new objects around them or through 
inheritance. When designing a test program, we can 
identify the following common patterns: 
– Driver that performs a task 
– Profile that characterizes a task 
– Scheduler that provides typical modes of task 

invocation 
– Configurator that reads textual configuration 

files that allow easy test setup without a need for 
recompilation 

– Logger that provides the methods to create 
standardized log files 

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

216



 

– TestBed is the factory that creates a test case 
based on a configuration 
An important pattern developed for the test-bed 

is the Scheduler pattern. It provides three modes of 
task invocation: uninterruptible, timer driven, and 
counter driven. The uninterruptible mode simply lets 
a task run forever. The timer driven mode stops a 
task after a predefined time period. In both cases 
task invocations can be time sliced, either randomly 
or within a fixed time interval. The counter mode 
stops a task after a given number of invocations. 
Generally, the scheduler is used as is, and requires 
no additional programming. Distributed schedulers 
can coordinate their activities by joining a group. A 
distributed scheduler can also be used when no 
distribution is immediately required, providing the 
group it joins is unique. 

The Profile pattern defines a virtual user of an 
application. Profile is an abstract class that is closely 
tied to a driver and a test case. A Profile comprises 
the attributes and actions required to set up a test 
case. A test case can define any number of profiles. 
Each profile is assigned a thread to run on by the 
scheduler, and a driver by the TestBed. Different 
profiles may use different scheduling policy and 
drivers. However, this is more a matter of 
convenience when testing multiple applications in 
the same time, rather than a necessity when 
measuring the performance of a single application in 
a single end-to-end test case. 

The Driver pattern defines the standard interface 
to execute a task in our test-bed. Tasks require 
establishing the communication channel when 
simulating an external entity or user, or simply 
invoking a method for white or black box testing. 
For example, when testing the Email GW, after 
composing the email message with or without 
attachments in a profile, an SMTP channel is 
established, and the message is sent to an Email 
GW. A number of standard drivers and profiles have 
been implemented for application, database and 
J2EE bean testing. 

The Configurator pattern provides the methods 
to read in, and parse configuration files and scripts. 
These are text files with attribute value pairs, one 
pair per line. The same attribute can be 
nondestructively redefined multiple times, so that 
multiple profiles can be defined by reusing the same 
attribute name. Some test cases require a more 
complicated mechanism than just sending a 
message. Often, interaction with a sequence of 
actions is required between a virtual user and a 
service provider, such as browsing an album of 
messages. Also a man-to-machine dialogue can take 
place, where the dialogue is based on a grammar. 
For example, when leaving a message on the phone 
a hierarchy of menus that lead the user to a goal 

must be followed. In Voice GW we use VoiceXML 
(VoiceXML) to define the grammar. Rather than 
programming multiple profiles for such a use case, 
Configurator provides the methods to parse and 
prepare a dialogue script for execution. Test scripts, 
configuration files, and content files (e.g. message 
body, attachments) can be accessed from multiple 
locations in a network via a file server. 

The Logger pattern defines the methods to create 
standardized log files suitable for analyzing in a 
spreadsheet. When a test case executes, generated 
data can be saved to file or redirected to the console 
for online monitoring (see Section 3.3). 

These components were built on top of Visper, 
either by refining existing classes (e.g. Logger, 
Scheduler), or by adding new classes (e.g. 
Configurator, Driver, Profile). The reuse ratio was 
about 90% excluding the new classes such as Profile 
and Driver that are test-bed specific. In terms of 
programming work, drivers were the most 
demanding, due to their domain specific and case-
by-case nature, and the number of different 
protocols and systems employed by the 
infrastructure. However, most drivers are simple to 
write, as they can reuse existing code or call 
standard Java APIs such as JavaMail (JavaMail), or 
similar. This has, nevertheless, caused problems 
initially because multiple programmers had to code 
the same specific drivers, before a comprehensive 
database of drivers was established. 

3.3 Visper 

Visper is a novel object-oriented framework that 
identifies and enhances common services and 
programming primitives, and implements a generic 
set of classes applicable to multiple programming 
models in a distributed environment. It emphasizes 
separation of concerns in the design, and hierarchy 
of layers in the implementation. Component reuse 
facilitates easy customizability and adaptability to 
different environments and application needs. Visper 
also features grouping of distributed collaborating 
objects, and agent-based (Genesereth, Ketchpel, 
1994) distributed system management. 

Visper has been designed and implemented in 
Java, with a number of utilities that facilitate 
portability and visual program development. 
Pertinent to this task, it implements a container in 
which remote threads execute, collaborate and 
communicate with each other if necessary. A remote 
thread is the basic unit of computation controlled by 
the host container. Remote threads are autonomous 
computing elements that can be dynamically 
instantiated and can migrate from one machine onto 
another. The Loader class implements a class loader 

INTERNET, WIRELESS AND LEGACY INTEGRATION - Architectural Framework for Testing

217



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Voice GW Testing 
 
that supports multiple access modes to Java .class 
files. The Console package implements a GUI for 
user-to-system interaction and system-to-user 
feedback. Specifically, following the master-slave 
scenario, console is the master that spawns and 
controls the remote threads on behalf of the user. 

4 EXAMPLE 

The configuration in Figure 3 has been used in 
testing the Voice GW for performance and stability. 
This configuration is rather complex, since it 
involves many distributed software and hardware 
components. It has multiple input points for load 
generation, such as the wired telephony, the VoIP 
access, and wireless messaging. In terms of 
development work, this was the most demanding 
task taking almost 3 man months to complete the 
VoIP and wired drivers. The complexity was due to 
the usage of native libraries to support SS7 and to 
simulate incoming wired phone lines that had to be 
linked into the Java Virtual Machine (JVM) 
(Lindholm, Yellin, 1999) via a Java Native Interface 
(JNI). Also, software for voice activity detection had 
to be incorporated. 

Test-bed sends MMS messages to the MMSC, 
simulates callers dialing Voice GW subscribers, 
reroutes the calls to the Voice GW, and plays voice 
messages for recording. Voice GW plays voice, text 
and fax messages to the subscribers. It sends the 
MMS message to the subscriber multimedia terminal 
via a WAP GW. 

As mentioned before, the standard handling of 
configuration and script files had to be improved to 
support dialogues with speech and DTMF 
grammars. For example, the legacy user dials a 
mobile phone number, and the call gets rerouted to a 
call center that starts playing a menu. The test script 
must be able to select a menu option, detect when 
there is no speech activity on the channel, wait for a 
tone, record the message, save it or even modify it 
before a save option is selected. Also, an option to 
verify that the right prompt was played by the Voice 
GW could be used in a dialogue. 

5 EXPERIENCE 

Performance testing is based on a number of 
repetitive tasks, with a multitude of user profiles. 
With application testing, the number of test cases is 
defined by the number of use cases which is often 

HEWLETT
PACKARD

MMSC

HEWLETT
PACKARD

SMSC

Voice GW

speechWeb

Visper

Cisco AS5350
VoIP GW

Cisco SLT2611

Sun Netra t 105
Cisco MGC

1st E1 Ports 1-30

2nd E1Ports 31-60

3rd E1 Ports 61-90

Voice Ports

SS7

HEWLETT
PACKARD

WAP GW NAS Server
Cisco 5300

Wired Phone
Lines

Visper

 

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

218



 

low. However, for any realistic testing the number of 
user profiles per test case should be large to simulate 
closely real world. This is particularly important for 
applications written in Java to understand, among 
others, the garbage collector (GC) behavior and 
optimize the code as to minimize its impact on 
performance. The impact of garbage collection due 
to bad memory management can be severe, and 
could slow down the system by 50% or more. These 
implementation problems have been common and 
widespread, because the engineers either did not 
understand the consequences of their decisions, or 
did not feel confident to explore alternative 
solutions. 

Not all of these deficiencies were easily resolved 
and when uncovered through testing and subsequent 
code analyses were sometimes ignored due to lack 
of time for improvement. Initial code and design 
reviews could easily notice this, but, being 
performed by peers, they generally failed to do so 
for the same reason. We found that peer inspections 
tend to degenerate into comments on style and first 
order semantic issues. This stands in contrast to the 
findings reported by other empirical studies (e.g. 
Boehm, Basili, 2001), even though we believe that 
these were representative teams for the 
semidetached and embedded mode projects both in 
size, age, and experience (60 engineers in total). 

Occasionally, we ran a short noncompulsory 
online survey to identify problems with the test-bed 
or gather opinions on the approach as more practical 
experience was acquired over time. The test-bed 
implementation proved stable and did not cause any 
major disruption. Product support was organized 
such that problems were resolved with highest 
priority. Initially, the main source of problems was 
in fact introduced in the introduction course. The 
course was focused on explaining the techniques and 
classes to write test programs for the test-bed. As 
such, little attention was paid to explaining the 
overall distributed environment concepts and 
programming. It was assumed that programmers 
would eventually pick up those through 
experimenting, if needed. 

However, early on more than half of the 
programmers actively using the test-bed were 
admittedly confused by the distributed nature of this 
environment, and the dynamic program distribution. 
The other half understood in principle actions and 
reactions as they have been encountered, and they 
were comfortable with the tool. As schedule was 
tight, there was little or no attempt to investigate 
beyond the effort to make the test program work. 
The questions asked and problems reported have 
shown that concepts from J2EE were blindly applied 
here without any discrimination. 

One of the reasons to use Visper as a base for the 
test-bed was in its ability to easily allocate and use 
machines for more processing power, without any 
programming intervention. However, as programs 
were being written, most of them have been 
executed on the same machine. Also, rather than 
using more machines to increase the test load, more 
Java threads were started via the Scheduler, and log 
was sent to the console. All those practices caused 
performance problems. Due to lack of time, no 
additional group training has been undertaken to 
rectify and explain the observed misconceptions, but 
most of them were resolved in a person-to-person 
conversation, via email, online FAQ and How To 
pages. 

Overall, the satisfaction with programming in 
test-bed was at about 30% initially, but gradually 
increased and stayed at about 65%. The main 
advantage, as perceived, was that within this 
framework it was much easier to write, understand 
and share test cases, and more importantly the 
drivers, and consequently the system under 
development. The situation that many programmers 
who worked on the development did not know how 
to use the system, or being familiar only with their 
own code, and had little or no knowledge of other 
parts of the system that have been developed by 
other programmers or groups was rectified. Also, 
quality of test programs was improved, so that each 
developer could perform not only functional testing, 
but also stability and performance testing as code 
was written and product was being developed. The 
task of writing test programs became very much 
mechanical, and while the time required to program 
a test case was reduced, the test results were 
improved, and became more comprehensive. 

6 BACKGROUND 

As pointed out by Weyuker and Vokolos (Weyuker, 
Vokolos, 2000), not many research papers have been 
published in the domain of software performance 
testing. Interestingly, their findings are also rooted in 
telephony, but their contribution is mainly in the 
domain of performance testing per se rather than 
testing tool development. While they made 
recommendation on how to approach software 
performance problems, the reported findings are not 
based on a whole software lifecycle. They 
experimented with an existing gateway system that 
was being redeployed on a new platform. 
Nevertheless, we find their conclusion that 
performance testing differs in many ways from 
functional testing correct. 

INTERNET, WIRELESS AND LEGACY INTEGRATION - Architectural Framework for Testing

219



 

Recently, Gorton and Liu (Gorton, Liu, 2002) 
investigated different J2EE compliant COTS 
middleware for large-scale applications and found 
that their adoption and use is not straightforward, 
which complies with our findings. Also, when 
selecting a middleware technology, it is important 
that it provides and sustains the necessary peak 
performance. As one would expect, the main 
middleware vendors (i.e. BEA, Borland, and IBM) 
yielded similar performance results. The more 
interesting question remains, as to how much of that 
raw performance can be exploited and retained when 
business specific code is added. The problem is not 
defined only as how computationally expensive is 
each use case, what is the background noise, but also 
how to identify and mitigate the bad design and 
implementation decisions. 

7 CONCLUSION 

Thus far, the answer to building a large commercial 
system has been in server centric 2-to-n-tier 
architecture and middleware to support it. Among 
the most recent addition to this family of products 
has been the J2EE middleware. As information 
exchange and availability became more and more 
ubiquitous, so did the demand for system integration 
become paramount. We find that the main 
contribution of J2EE is in providing a 
comprehensive platform for developing such 
systems. J2EE relieves programmers from thread 
and pool management, as they do not have to deal 
with these issues explicitly. On the other hand Java 
beans have introduced a new level of behavioral 
complexity and configuration problems that has to 
be understood and managed. Otherwise, unexpected 
problems may occur that are hard for a novice to 
resolve. Typical performance problems found in 
Java applications and techniques to overcome them 
have been extensively studied and published, but 
their broad adoption and understanding by (less 
experienced) programmers is still questionable. 

In this paper we also focused on evaluating 
Visper in a production environment, where it served 
as a basis for building a comprehensive set of testing 
tools and programs. The easy configurability and 
simple programming model have proven valuable in 
an environment where the pressure of change is 
constant and activities evolve quickly. Even though 
the tool was new to the programmers, it was 
generally quickly adopted and used without major 
problems or dissatisfaction. Test-bed gave the 
programmers a chance to interact with the 
application as it was being developed, and to 
understand and resolve problems as they appeared. 

As a result, quality was significantly improved, and 
the number of problems discovered and reported by 
QA was proportionally reduced. 

REFERENCES 

Boehm, B., and Basili, V.R., 2001. Software Defect 
Reduction Top 10 List, IEEE Computer, 34(1), pp. 
135-137. 

Bruegge, B., and Dutoit, A.H., 2004. Object-Oriented 
Software Engineering, Pearson Education, Inc. Upper 
Saddle River, NJ 07458. 

Campione, M., Walrath, K., and Huml, A., 2000. The Java 
Tutorial: A Short Course on the Basics, Addison-
Wesley, Reading, MA, 3rd edition. 

Genesereth, M.R., and Ketchpel, S.P., 1994. Software 
Agents, Communications of the ACM, 37(7), pp.48-53. 

Gorton, I., and Liu, A., 2002. Software Component 
Quality Assessment in Practice: Success and Practical 
Impediments, ICSE, pp. 555-558. 

J2EE, 2003. java.sun.com/j2ee/1.4/docs/index.html 
JavaMail. java.sun.com/products/javamail/index.jsp 
Lindholm, T., and Yellin, F., 1999. The Java Virtual 

Machine Specification, Addison-Wesley, Reading, 
MA, 2nd edition. 

SS7. www.iec.org/online/tutorials/ss7 
Stankovic, N., and Zhang, K., 2002. A Distributed Parallel 

Programming Framework, IEEE Transactions on 
Software Engineering, 28(5), pp.478-493. 

T1. www.t1-t3-dsl-line.com 
VoiceXML. www.w3.org/Voice/Guide 
VoIP. www.fcc.gov/voip 
WAP. www.wapforum.org 
Weyuker, E.J., and Vokolos, F.I., 2000. Experience with 

Performance Testing of Software Systems: Issues, an 
Approach, and Case Study, IEEE TSE, 26(12), pp. 
1147-1156. 

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

220


