
STACKFENCES: A RUN-TIME APPROACH FOR DETECTING
STACK OVERFLOWS

André Zúquete
IEETA / UA

Campus Univ. de Santiago, 3810-193 Aveiro, Portugal

Keywords: Buffer overflows, run-time detection, run-time correctness assessment, damage containment, dependability

Abstract: This paper describes StackFences, a run-time technique for detecting overflows in local variables in C pro-
grams. This technique is different from all others developed so far because it tries to detect explicit overflow
occurrences, instead of detecting if a particular stack value, namely a return address, was corrupted because of
a stack overflow. Thus, StackFences is useful not only for detecting intrusion attempts but also for checking
the run-time robustness of applications. We also conceived different policies for deploying StackFences, al-
lowing a proper balancing between detection accuracy and performance. Effectiveness tests confirmed that all
overflows in local variables are detected before causing any severe damage. Performance tests ran with several
tools and parameters showed an acceptable performance degradation.

1 INTRODUCTION

The exploitation of overflow vulnerabilities has been
one of the most popular forms of computer attacks
during the last 15 years. According to the ICAT
Metabase vulnerability statistics1, about 20% of the
vulnerabilities published in the last 4 years are related
with buffer overflows. Such vulnerabilities existed in
compiled C or C++ code used for different purposes:
operating system (OS) kernel; server and client appli-
cations. For some people the problem will continue to
exist as long C is used, and can only be minimized or
eliminated by using other languages instead of C (Mc-
Graw, 2002). However, C is still widely used, and
probably will continue to be, because it generates fast
compiled code and there is a large repository of legacy
code written in C. Therefore, there is a real need for
techniques and tools that help to minimize the number
and the risk of overflows in old or new C programs.

StackFences is a solution for detecting buffer over-
flows affecting local variables, i.e., variables allocated
in stack frames. The key idea that we explored is
an extension to the canary mechanism, introduced
in StackGuard (Cowan et al., 1998), complemented
with the XOR canary mechanism introduced also in
StackGuard. The original canary mechanisms were
deployed for protecting only return values stored in

1http://icat.nist.gov

the stack. We extended the protection scope and used
canaries for controlling all stack areas susceptible to
overflow. This way, we hope to detect each and ev-
ery stack overflow, either affecting highly sensible
values, like return addresses, or not. We also con-
ceived different policies for balancing detection accu-
racy and performance. Namely, run-time validations
can be performed in two different ways: (i) one more
detailed, allowing a more accurate and timely detec-
tion of overflows, more suitable for development sce-
narios, and (ii) one lazier, checking only when abso-
lutely necessary, more suitable for production envi-
ronments.

For testing StackFences we developed a prototype
for Linux systems using TCC (Tiny C Compiler). C
modules compiled with StackFences are fully com-
patible with the standard C libraries and with mod-
ules compiled with other compilers or compilation
options.

2 OVERVIEW

There are mainly two reasons for the buffer overflow
problems in C programs. First, the language does not
check for any boundaries around variables and allows
programmers to manage memory areas at will, with-
out any run-time control, using pointers, type casts

76
Zúquete A. (2004).
STACKFENCES: A RUN-TIME APPROACH FOR DETECTING STACK OVERFLOWS.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 76-84
DOI: 10.5220/0001398000760084
Copyright c© SciTePress



and pointer arithmetic. Second, many standard C
library functions are intrinsically unsafe concerning
buffer overflows (e.g. the infamous gets() and sev-
eral functions for manipulating strings).

Buffer overflows are a problem because they can
be used to modify data that controls the execution of
a victim process or OS kernel. The exploitation of
a buffer overflow vulnerability can expose a victim
application to two different risks:
Denial of Service (DoS): an attacker may interfere

randomly with the application’s execution flow,
eventually making it fail after some illegal opera-
tion.

Penetration: An attacker may take control of the
application’s execution flow by performing a crafty
buffer overflow.

Ideally, one would like to avoid both risks, but
that may be difficult or even impossible to achieve
with current hardware architectures and existing soft-
ware. Comparing both risks, the risk of penetration is
greater than the risk of DoS. Therefore, it seems use-
ful to avoid penetration risks by transforming them
into DoS risks. We followed this reasoning in the de-
sign of StackFences.

2.1 Detection vs. prevention

Buffer overflows may be detected using static analy-
sis, i.e., before actually compiling and deploying the
code (e.g. (Wagner et al., 2000; Larochelle and Evans,
2001)). Another possibility is to tackle buffer over-
flows dynamically, or at run-time, during the execu-
tion of the vulnerable applications. This was the ap-
proach that we followed in StackFences.

Dealing with buffer overflows at run-time implies
either prevention or detection. Prevention attempts to
conceal overflow vulnerabilities or to make their oc-
currence partially or totally harmless. Though preven-
tion does not help finding problems out, it is highly
desirable for avoiding both DoS and penetration risks.
However, total prevention is difficult to achieve.

Detection attempts to detect the occurrence of ab-
normal facts, such as buffer overflows. Detection only
mitigates the problem, since the usual reaction is to
raise some sort of alert and immediately terminate the
affected application or OS kernel, eventually leading
to a DoS situation. Therefore, detection helps to as-
sess correctness on the execution of applications with
overflow vulnerabilities, which is important for im-
proving damage containment and reducing penetra-
tion risks. StackFences is a detection solution.

2.2 Anatomy of a stack overflow

The overflow of the stack memory reserved for a C
variable can corrupt the execution flow of an applica-

tion in many ways. Assuming only overflows across
memory with growing addresses and an x86 micro-
processor, we have at least the following scenarios:

1. By setting the value of a neighbouring variable be-
low in the stack.

2. By setting the value of a saved frame pointer of
a previous stack frame to another address. When
the modified frame pointer is recovered, the appli-
cation will use, in that stack frame, different local
variables and function arguments.

3. By setting the return address for the calling func-
tion. When the function returns it will continue to
execute at an address chosen by the attacker.

These attacks can be complemented by inserting
auxiliary data, like microprocessor instructions or
function parameters, into input buffers, overflowed or
not. The auxiliary data can be used later for a pene-
tration bootstrap if the attacker succeeds in using it.

Most overflow attacks are stack-smashing at-
tacks (Aleph One, 1996), i.e., attacks of the third type
referred above, that overwrite return addresses and
jump into bootstrap penetration code. The famous In-
ternet Worm of 1988 did it (Spafford, 1989), as well
as many other attacks thereafter.

But the two other types are also risky. J. Wilander
and M. Kambar pointed out, in (Wilander and Kam-
bar, 2002), that a general weakness of the solutions
presented so far for run-time detection or prevention
is that they protect known attack targets, mainly re-
turn addresses in the stack, instead of protecting all
targets. From a pragmatic point of view, we can un-
derstand why that happens: stack-smashing attacks
are the simplest and most popular ones. But for deal-
ing with future and more sophisticated attacks ex-
ploiting buffer overflows we need to change the pro-
tection paradigm, like we did with StackFences.

3 RELATED WORK

In this section we describe the approach followed
by several run-time overflow detection or prevention
techniques. We do not address any static detection
solutions.

Many run-time protection techniques were devel-
oped to protect the most common target of overflow
attacks: the return pointer. StackGuard (Cowan et al.,
1998) uses canaries, which are specific values that are
placed between the local variables and the return ad-
dress in the same stack frame. The canary is installed
in the function prologue and checked in the epilogue.
If its value changed in the meanwhile then there was
an overflow and the process is halted; otherwise the
function returns normally.

STACKFENCES: A RUN-TIME APPROACH FOR DETECTING STACK OVERFLOWS

77



Propolice (Etoh and Yoda, 2000) enhances the
basic protection of StackGuard by rearranging local
variables. The assumptions of propolice are that
(i) only character arrays are vulnerable to overflows
and (ii) function arguments do not contain character
arrays. Thus, vulnerable local variables — charac-
ter arrays or structures with character arrays — are
packed together in a vulnerable location next to the
canary (guard). All other variables are placed above
in the stack. This way, overflows can occur inside
vulnerable locations but cannot affect non-vulnerable
variables neither the return address, which is pro-
tected by the canary. However, propolice assump-
tions are not complete, because there are other kinds
of vulnerable variables besides character arrays, and
ignores overflows affecting only variables in a vulner-
able area.

Another way of protecting return addresses is by
hiding them with a XOR canary, or cookie. The XOR
canary is XORed with the return address in a func-
tion’s prologue and again in the epilogue. Attackers
not knowing the value of the XOR canary are un-
able to modify return addresses in a useful manner.
StackGuard was the first to use XOR canaries to frus-
trate attacks (to return addresses) circumventing the
basic canary mechanism2. StackGhost (Frantzen and
Shuey, 2001) is kernel-level solution for Sparc archi-
tectures that protects return addresses with XOR ca-
naries. It uses either per-kernel or per-process XOR
canaries, but the first is too weak for competent hack-
ers. Overflow attacks affecting return values produce
wrong return addresses. These can be automatically
detected in 75% of the cases because Sparc instruc-
tions must be aligned on a 4-byte boundary; on the
other 25% the program will run uncontrolled.

StackGuard’s MemGuard (Cowan et al., 1998) pro-
tection makes return addresses in the stack read-only
during the normal execution of functions. This way,
any attempts to overwrite them raise a memory ex-
ception. However, the performance penalty of this
approach is huge.

Another way of protecting return addresses is to
keep a separate copy of them in a return-address
stack. Return addresses are stored in and fetched from
the return-address stack in the function’s prologue
and epilogue, respectively. Vendicator’s StackShield3

Global Ret Stack protection and Secure Return
Address Stack (Xu et al., 2002) use only the copied
values, thus preventing attacks affecting return ad-
dresses stored in the normal stack. But these solutions
fail completely in protecting any other stack values
from overflows.

The Return Address Defender (Chiueh and Hsu,
2001) also uses a return-address stack but provides

2This mechanism was introduced in version 1.12.
3http://www.angelfire.com/sk/stackshield

only detection because return addresses on the Re-
turn Address Repository are compared with the ones
in the ordinary stack before being used, and the pro-
cess is halted if they are different. StackShield’s Ret
Range Check is similar but stores a copy of the
current return address in a global variable. They are
both useless against overflow attacks overwriting the
return address with its exact value, which is not diffi-
cult to guess for a competent hacker.

Libverify (Baratloo et al., 2000) also uses a return-
address stack but it can be transparently applied to
existing binary code by means of a dynamic library.
The drawback of Libverify is that all protected code
must be copied into the heap to overwrite instructions
in the prologue and epilogue of all functions. This
means that processes are unable to share the code they
effectively run in main memory and absolute jumps
within the text area must be handled with traps.

Libsafe (Baratloo et al., 2000) is a dynamic library
that replaces unsafe functions of the standard C li-
brary that are typically used for performing buffer
overflows. All Libsafe functions compute the upper
bounds of destination’s buffers before actually trans-
ferring data into memory. The upper bounds are de-
fined by the location of return addresses. But the pro-
tection is limited and misses unsafe functions com-
piled inline within existing applications or libraries.

PointGuard (Cowan et al., 2003) is an extension
of the original XOR canary mechanism for protect-
ing pointer variables. Pointers are stored encrypted
(XORed with the XOR canary) and are decrypted
when loaded into CPU registers. However, this ap-
proach raises problems when integrating mix-mode
code (some PointGuard, some not).

Practically all protection mechanisms look only at
the effects of overflows within the current stack frame
— exceptions are PointGuard and Libsafe. Stack-
Guard 3 (Wagle and Cowan, 2003) and Libsafe also
protect saved frame pointers, which are collocated
with return addresses. And propolice, under their
assumptions, further protects all variables that are not
character arrays or structures with character arrays.

Most of the protection mechanisms described are
added at compile time; exceptions are Libsafe, Lib-
verify and StackGhost. StackFences is also added at
compile time.

With StackFences we tried to further improve the
detection of stack overflows. Namely, we tried to (i)
detect overflows within all existing stack frames, not
only the current one; and to (ii) detect overflows from
all variables that could be overflowed. In this par-
ticular case we extended propolice’s and Point-
Guard’s notions of vulnerable areas and we do not
ignore overflows within variables belonging to a vul-
nerable area, as propolice does.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

78



4 OUR CONTRIBUTION:
StackFences

To detect overflows in stack variables we use
StackGuard-like boundary canaries between them.
The management of canaries — allocation, set-up and
checking — depends on the kind of stack variables we
are dealing with: local variables or function parame-
ters. In this paper we handle only the management of
boundary canaries for local variables.

The value of canaries is protected with a XOR ca-
nary, that is a per-process random 32-bit value. The
canary is stored in a publicly known variable (cXor
hereafter) and should not be modified after being
setup. Adaptive attacks trying to guess the correct
value of a process’ canary are infeasible, in theory,
because attacked processes should terminate after an
attack with an unsuitable, tentative canary value. We
assume, like for StackGuard, StackGhost and Point-
Guard, that attackers cannot get dumps of memory
areas containing any well-known values XORed with
the XOR canary.

4.1 Overview

Boundary canaries are located near local variables, on
higher addresses. The questions now are (i) which
variables we want to, or should, bind with canaries,
(ii) how do we find the canaries and check their value;
and (iii) when do we want to, or should, check the
value of canaries.

4.1.1 Variables to bind with canaries

Following a high security policy, we should bind all
stack variables. But this is a sort of brute force ap-
proach that has considerable impact in the perfor-
mance of modified applications.

A more relaxed policy, which we chose for Stack-
Fences, is to bind only potentially vulnerable vari-
ables. These are the variables for which a pointer is
taken and used in the current function or other func-
tion called upon it. This policy is more efficiency than
the previous one and should tackle most stack over-
flow problems, since they usually derive from defi-
cient uses of legitimate stack addresses.

Because the size of C structures cannot be altered,
canaries cannot be added between members of local
struct variables. Therefore, overflows may still oc-
cur inside structures, but not affecting external mem-
ory areas.

4.1.2 Looking for and checking canaries

We used a function-independent way of locating and
checking canaries, because it appeared to be more

cann−3

can0
-

¾ cTail

function parameters

prev frame pointer
return address

cann−2

local variable

cann−1

local variable

cann

local variable

¾

¾

¾

-cHead

current stack frame

previous stack frames

stack bottom

-

prev cHead

Figure 1: Example of the list of canaries, starting in the cur-
rent stack frame (cann) and until the first one inserted at
the beginning of the process execution (can0). Variables
cHead and ÄcTail point the head and tail of the list. Shaded
boxes represent canaries XORed with the process’ XOR ca-
nary.

flexible and simple to implement and test. The set
of all boundary canaries forms a linked list, as shown
in Fig. 1. The location of the head and tail canaries of
the list are stored in publicly known variables (cHead
and cTail in this text). The virtual address (of an-
other canary) stored in each canary is protected using
the XOR canary previously referred. This way an at-
tacker causing the overflow of a stack variable cannot
easily guess valid values for boundary canaries be-
tween the overflowed variable and the neighbouring
variables to be tampered.

The full list of canaries, or particular sub-lists, can
easily be checked by dereferencing canaries, XOR-
ing the obtained value with the XOR canary and test-
ing whether the result is a valid address. Testing the
validity of an address is straightforward: (i) it must
be higher than the previous one, because the list goes
strictly from the top to the bottom of the stack, and
(ii) it cannot be higher than a target canary address
that we want to reach. Any violation of these asser-
tions is an overflow evidence.

4.1.3 Triggering canary checking

There are at least two distinct situations that should
trigger canary checking:
Before doing some operation related with the ex-

ternal perception of the application’s behaviour.
Broadly, this means that checking should be done
before any I/O attempt;

Just before the return of a function. In this case,
we should check for overflows within the current
stack frame, i.e., caused in local variables or pa-
rameters, which will disappear because the stack

STACKFENCES: A RUN-TIME APPROACH FOR DETECTING STACK OVERFLOWS

79



frame will be released.
In the first case, we should check the full list of

canaries, from cHead to cTail, because we are
looking for any stack overflow. The more times it is
checked, the more timely we can find stack overflows,
but with a significant impact on the performance of
the application.

In the second case, we should check only the list of
canaries belonging to the local stack frame (cann to
cann−2 in Fig. 1) since we are looking for evidences
of local stack overflows that are about to disappear.
If no canaries exist in the current stack frame then no
local checking is required. Checking a local list of
canaries is also an iterative walk starting in cHead
but ending in the head canary of the previous stack
frames (cann−3 in Fig. 1).

4.2 Management of the canary list

StackFences’ canaries are similar to local variables,
but are invisible to application code and have a
compiler-defined (initial) value. The stack space for
canaries is allocated when the compiler defines the
location of local variables. The setup of the canaries
should occur after the normal C prologue.

The list of canaries is increased after the prologue
of a function and decreased when the function returns.
Increasing the list consists of adding all canaries in the
local stack frame to the head of the list and storing in
cHead the address of the new top-most stack canary
(cann in Fig. 1). Decreasing the list consists simply
of setting the value of cHead using the address of the
head canary of the previous stack frames (cann−3 in
Fig. 1).

The list of canaries must also be increased when the
program calls alloca. The space requested should
be increased to accommodate a canary at the end of it,
which becomes the new list head. The list must also
be decreased when the program calls longjmp; in
this context it is similar to a long return. The value
of cHead must be set with the address of the head
canary in the stack frame we are jumping into, or in
some other stack frame below.

4.3 Policies for canary checking

Checking boundary canaries is a potentially expen-
sive operation, thus it needs to be carefully managed
in order to balance two requirements: (i) effective de-
tection of stack overflows and (ii) efficient execution
of the program. Furthermore, in terms of effective-
ness, two natural approaches should be contemplated
considering the software life cycle: (i) in develop-
ment stages, the sooner overflows are spotted the bet-
ter, while (ii) in production stages, preventing applica-
tions from “making damage” may be enough for most

cases.
Thus, considering the two execution environments

mentioned above – development and production – we
conceived two different policies for checking the cor-
rectness of boundary canaries. The two policies de-
fine when two lists of canaries are checked: (i) the list
of canaries belonging to the current stack frame and
(ii) the full list of canaries.

4.3.1 Checking local canaries

As previously explained, boundary canaries on the
current stack frame should be checked when the stack
frame is about to be released; otherwise, we could
miss local overflows. Consequently, the reduction of
the canary list, both within a normal function return
and within a call to longjmp, always checks the con-
sistency of all released canaries.

The extra code for checking local canaries and re-
ducing the list of canaries was placed in a function
(canReduce) that is called before the function’s epi-
logue. It gets, as a parameter, the address of the
head canary in the previous stack frames (cann−3 in
Fig. 1). This address is stored (in clear) at the top
of the current stack frame in the function’s prologue
(prev cHead in Fig. 1). The function canReduce
checks the canaries from cHead until prev cHead
and, at the end, stores prev cHead in cHead.

For handling the reduction of the canary list af-
ter a longjmp call we use a function similar to
canReduce. The function starts from cHead and
walks along the canary list until finding a canary with
an address higher than the stack pointer saved in the
jump context. The address of that canary will be
stored in cHead. Jump contexts stored by setjmp
and used by longjmp are not modified; only the
functionality of longjmp needs to be extended.

4.3.2 Checking all canaries

We conceived two policies for checking the full list
of canaries: one more suitable for development sce-
narios, another more suitable for production environ-
ments. In either case, we tried to prevent an attacked
process from doing any I/O after a stack buffer over-
flow. The checking function is named canWalk.

Development policy: In a development scenario
we want to catch an overflow as accurately as pos-
sible, in order to simplify the process of finding and
fixing the vulnerability. It is, thus, natural to sacrifice
execution efficiency in favour of debugging effective-
ness. Our development policy consists of a canWalk
call before each function call. This approach is com-
putationally costly but has the advantage of detecting
overflows not far from where they occurred.

Production policy: In a production scenario we
want the applications to run efficiently and, yet, we

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

80



want to detect overflows before they can interfere with
their I/O. Our production policy consists of a watch-
dog process to catch all the system calls of the target
process and to call canWalk before each I/O sys-
tem call requested by the target process. We define
an I/O system call as a system call interacting with
I/O objects (files, pipes, sockets, etc.) or with other
operating system resources (e.g. send signals to other
processes, manage virtual memory attributes, change
the ownership of the process, etc.).

5 IMPLEMENTATION

For implementing all the mechanisms and policies
previously described for detecting stack buffer over-
flows we modified a C compiler and developed 3
auxiliary C modules for Linux systems that must
be linked with the applications we want to protect.
The applications only need to be recompiled with the
modified compiler and linked with some of the mod-
ules to use StackFences.

For the C compiler we used the version 0.9.20
of TCC (Tiny C Compiler), a simple but complete
C compiler developed by Fabrice Bellard (Bellard,
2003). We chose this compiler mainly because it al-
lows a fast prototyping for getting a proof of concept.

The first auxiliary module defines variables and
functions that are common to all overflow checking
facilities — the public variables cXor, cHead and
cTail; the XOR canary setup function (that uses the
file /dev/urandom), the function canReduce;
and a new longjmp function.

The second auxiliary module defines a new main
and all the checking/aborting functions for the de-
velopment policy. The new main defines the initial
boundary canary, initiates variables in the previous
module and calls the application’s original main.

The third auxiliary module defines a new main and
all the checking/aborting functions for the production
policy. The new main creates a child process for run-
ning the application and the initial process stays as the
watchdog of the new one (using ptrace). The code
of new main executing in the child process is basi-
cally identical to the one of the second module.

The watchdog triggers a call to canWalk before
allowing the execution of any requested I/O system
call. The canWalk function is similar to the one
in the second module but fetches canary values with
ptrace because it runs in a different process.

6 EFFECTIVENESS
EVALUATION

We tested the effectiveness of StackFences with the
test suite described in (Wilander and Kambar, 2002)
and kindly provided by the authors. The results were
the best possible: StackFences detected and halted all
12 attacks overflowing stack variables. We were also
able to do so using either of the canary checking poli-
cies described in §4.3.2.

The empirical results obtained with the same test
suite and using 4 protection tools — StackGuard,
StackShield, propolice and Libsafe/Libverify –
showed that the tools where able to handle, in the best
case, 10 out of the 12 attacks (with propolice).
Note, however, that:
• the test suite is not complete, it only overflows

character arrays, which are exactly the vulnerable
variables considered by propolice. But Stack-
Fences is more powerful, being able to detect over-
flows in local variables other than character arrays.
Therefore, StackFences is much better suited for
assessing the correctness of applications in run-
time than propolice, but that cannot be fully
demonstrated with this test suite.

• propolice does not detect any overflows within
consecutive character arrays, as StackFences does,
and such vulnerability is also not explored by the
test suite.

7 PERFORMANCE EVALUATION

The performance penalties introduced by Stack-
Fences depend on several factors, namely: (i) the
number of vulnerable local variables; (ii) the number
of function calls; (iii) the length of the list of canaries
when canWalk is called; and (iv) the number of I/O
operations that trigger the call to canWalk (if using
the production policy).

We evaluated StackFences with both micro and
macro benchmarks. The micro benchmarks provide
upper bounds to the overheads caused by setting and
checking canaries in each function’s prologue and
epilogue, respectively. The macro benchmarks help
us to have an idea about the relative cost of each
checking policy, because they control the calls to
canWalk, and also to get an idea about the space
occupied by canaries. But, for lack of space, micro
benchmarks are not further referred in this article.

For the evaluation of StackFences with macro
benchmarks we chose 3 tools with moderate file I/O
and high CPU activity: ctags, tcc and bzip2.
These 3 tools where compiled in 4 different ways —
with gcc, tcc, and tcc with the two StackFences

STACKFENCES: A RUN-TIME APPROACH FOR DETECTING STACK OVERFLOWS

81



Table 1: Results of the execution of macro benchmarks with existing applications for evaluating the total overheads introduced
by StackFences and statistic data regarding the checking of StackFences’ canaries.

elapsed time (ms) StackFences statistics
tool local variables arguments StackFences gcc tcc canReduce canWalk

total vulnerable policy -O3 orig. with calls length calls length
StackFences avg. max. avg. max.

bzip2 development 70 122 149 (+22%) 1,667 5.9 11 437,946 21.8 24
sources production 126 (+3%) 48 7.4 13

bzip2 462 302 tcc development 207 324 396 (+22%) 1,970 6.0 11 1,127,521 22.1 24
(65%) sources production 334 (+3%) 62 8.4 13

ctags development 230 360 439 (+22%) 1,683 5.9 11 1,207,621 22.3 24
sources production 371 (+3%) 60 8.5 13

bzip2 development 89 167 419 (+151%) 411,256 2.4 10 2,927,026 30.8 165
sources production 217 (+30%) 1,250 14.6 65

tcc 978 603 tcc development 97 179 517 (+189%) 464,208 2.5 10 3,737,023 33.5 252
(62%) sources production 222 (+24%) 928 15.9 60

ctags development 304 541 1,149 (+112%) 1,231,803 2.3 10 8,297,317 24.1 163
sources production 724 (+34%) 4,682 13.9 102

bzip2 development 36 36 49 (+36%) 3,338 1.4 3 1,334,837 2.1 5
sources production 44 (+22%) 137 2.3 4

ctags 911 178 tcc development 91 92 132 (+43%) 13,899 1.4 3 3,599,858 2.2 5
(20%) sources production 116 (+26%) 207 2.3 4

ctags development 91 98 138 (+41%) 16,530 1.4 3 3,480,356 2.2 5
sources production 138 (+41%) 391 2.2 4

checking policies — and executed with 3 different pa-
rameters — the sources of each of the 3 tools. All
benchmarks ran in a Red Hat 8.0 Linux box (kernel
2.4.18-27.8.0) with a Pentium IV at 2.4 GHz, 256 MB
RAM and 512 KB cache.

The results of the evaluation are presented in Ta-
ble 1: the second and third columns show the num-
ber of local variables used by the tools and the num-
ber and percentage of them that are vulnerable and
checked by StackFences; the fourth column shows the
arguments used with the tools; the fifth column shows
the protection policy used with StackFences. In the
rest of the columns we have execution results: the
sixth and seventh columns show the elapsed time ob-
served with the tools compiled with gcc (with max-
imum optimisation) and the normal tcc (that has no
optimisations); the eighth column shows the elapsed
time observed with the tools compiled with tcc and
StackFences, using both security policies, and the
overhead in percentage comparing with the results
of the previous column; the last six columns show
the number of calls to canReduce and canWalk
and the average and maximum number of canaries
checked per call. StackFences’ auxiliary modules
were written in C and compiled with gcc and max-
imum optimisation. The elapsed times are the mini-
mum observed in 100 consecutive runs of each test.

The values provided for gcc are only indicative,
because many dynamic solutions for dealing with
buffer overflows were implemented with it. But it
doesn’t make sense to extrapolate the overhead of

StackFences comparing with gcc because some of
the optimisations used by the latter would also reduce
the overhead of StackFences if it was part of gcc.
For instance, tcc has many small inline functions.
Since our version of TCC ignores inline qualifiers,
that greatly increases the number of canReduce
calls and the average number of canaries checked by
canWalk. Such overhead would not happen if we
had integrated StackFences with gcc.

The results in Table 1 show that the overheads in-
troduced by StackFences are acceptable. With the de-
velopment policy, overheads are between 22% and
189% of the elapsed time with tcc and without
StackFences. With the production policy, overheads
are lower, as desired, between 3% and 41%. The pro-
duction policy greatly reduces the number of calls to
canWalk, as expected. But in some cases, namely
with ctags, results show that it is almost irrelevant
to use either checking policy. That happens because
the average number of canaries checked by canWalk
is low, making more relevant the cost of the process
switching between the application and its watchdog
in the production policy.

Considering the applications tested, the extra space
occupied by canaries in the stack is not an issue. In
the worst case there is a maximum of 252+10 canaries
(when tcc is compiled by itself using the develop-
ment policy), which represents a memory overhead
of about 1 KB.

A small comparison can be established between the
performance of ctags with StackGuard and with

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

82



StackFences. According to (Cowan et al., 1998),
ctags with StackGuard has an overhead of 80%
when processing 78 files, 37,000 lines of code. Using
the same number of files and an approximated num-
ber of lines of code (37,188) we got for StackFences a
lower performance penalty: 31% with the production
policy and 41% with the debug policy.

According to Table 1, gcc and tcc generate
equally fast ctags executables. Therefore, for this
particular experience we can compare the overheads
of the two protection mechanisms independently of
the compilers implementing them. And the conclu-
sion is that StackFences is faster than StackGuard,
which makes less validation actions! This paradox is
probably explained by the fact that the performance
figures presented in (Cowan et al., 1998) were ob-
tained with a non-optimized version of StackGuard,
that added canaries and code for checking them to all
functions, instead of doing it only for functions with
vulnerable local variables. This fact is mentioned
in the performance optimisations for StackGuard de-
scribed in (Cowan et al., 1998). StackFences, on
the contrary, was optimized to add canaries and for
checking them locally with canReduce only in
functions with vulnerable variables.

8 CONCLUSIONS

We have presented StackFences, a run-time solution
for detecting buffer overflows affecting variables allo-
cated in stack frames. StackFences detects overflows
in all potentially vulnerable local variables instead of
detecting only overflows affecting known attack tar-
gets, like return addresses. To the best of our knowl-
edge this is the first solution to perform such a de-
tailed run-time stack analysis.

For balancing detection accuracy and performance
we conceived two checking policies for StackFences:
a development policy, more detailed and allowing a
more accurate and timely detection of overflow occur-
rences, suitable for development scenarios; and a pro-
duction policy, lazier, checking only when absolutely
necessary, suitable for production environments.

In terms of effectiveness, StackFences detected and
halted all the 12 attacks of the test suite described
in (Wilander and Kambar, 2002). Although it may
appear that StackFences is minutely different from
propolice, which avoids 10 of those attacks, that
is not true because StackFences detects other over-
flows that are not considered by the test suite and nei-
ther tackled by propolice. StackFences is much
better suited for assessing the correctness of applica-
tions in run-time than propolice, though the test
suite does not properly demonstrate that.

The performance of StackFences is acceptable but

depends a lot on the compiled application. We be-
lieve that optimizing canary checking code can fur-
ther reduce StackFences’ overheads. As desired, the
overhead of the production policy is lower than the
overhead of the debug policy. Finally, StackFences’
overheads are mainly compiler independent, though
they may depend on some compiling options.

REFERENCES

Aleph One (1996). Smashing The Stack For Fun And Profit.
Phrack Magazine, 7(49).

Baratloo, A., Singh, N., and Tsai, T. (2000). Transparent
Run-Time Defense Against Stack Smashing Attacks.
In Proc. of the USENIX Annual Technical Conf., San
Diego, CA, USA.

Bellard, F. (2003). Tiny C Compiler, version 0.9.20.
http://fabrice.bellard.free.fr/tcc.

Chiueh, T.-C. and Hsu, F.-H. (2001). RAD: A Compile-time
Solution to Buffer Overflow Attacks. In IEEE Int.
Conf. on Distr. Computing Systems (ICDCS), Phoenix,
AZ, USA.

Cowan, C., Beattie, S., Johansen, J., and Wagle, P. (2003).
PointGuard: Protecting Pointers From Buffer Over-
flow Vulnerabilities. In 12th USENIX Security Symp.,
Washington, D.C., USA.

Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J.,
Bakke, P., Beattie, S., Grier, A., Wagle, P., and Zhang,
Q. (1998). StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer-Overflow Attacks. In
Proc. 7th USENIX Security Conf., pages 63–78, San
Antonio, TX, USA.

Etoh, H. and Yoda, K. (2000). propolice: Im-
proved stack-smashing attack detection. IPSJ
SIGNotes Computer SECurity Abstract, 43(12).
http://www.ipsj.or.jp/members/
Journal/Eng/4312/article053.html.

Frantzen, M. and Shuey, M. (2001). StackGhost: Hard-
ware Facilitated Stack Protection. In Proc. of the 10th
USENIX Security Symp., Washington, D.C., USA.

Larochelle, D. and Evans, D. (2001). Statically Detecting
Likely Buffer Overflow Vulnerabilities. In Proc. of the
10th USENIX Security Symp., pages 177–190, Wash-
ington, D.C., USA.

McGraw, G. (2002). Building Secure Software. In
RTO/NATO Real-Time Intrusion Detection Symp., Es-
toril, Portugal. Invited Talk.

Spafford, E. H. (1989). The Internet Worm Incident. In
Ghezzi, C. and McDermid, J. A., editors, ESEC‘89
2nd European Software Engineering Conf., University
of Warwick, Coventry, United Kingdom. Springer.

Wagle, P. and Cowan, C. (2003). StackGuard: Simple Stack
Smash Protection for GCC. In Proc. of the GCC De-
velopers Summit, pages 243–255.

Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A.
(2000). A First Step towards Automated Detection of

STACKFENCES: A RUN-TIME APPROACH FOR DETECTING STACK OVERFLOWS

83



Buffer Overrun Vulnerabilities. In Proc. of the Inter-
net Soc. Symp. on Network and Distr. Systems Security
(NDSS 00), pages 3–17, San Diego, CA, USA.

Wilander, J. and Kambar, M. (2002). A Comparison of Pub-
licly Available Tools for static intrusion prevention. In
Proc. of the 7th Nordic Workshop on Secure IT Sys-
tems, pages 68–84, Karlstad, Sweden.

Xu, J., Kalbarczyk, Z., Patel, S., and Iyer, R. K. (2002).
Architecture Support for Defending Against Buffer
Overflow Attacks. In 2nd Works. on Evaluating and
Architecting System Dependability (EASY), San Jose,
CA, USA.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

84


