
DESIGN OF INTRUSION DETECTION SYSTEM AT USER LEVEL
WITH SYSTEM-CALL INTERPOSING

Toshihiro TABATA and Kouichi SAKURAI
Faculty of Information Science and Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Keywords: Dynamic Linker, Intrusion detection system, Library function call, ELF

Abstract: As computers have become widely used, software vulnerability is now one of the most serious security threats.
In particular, viruses and worms that use buffer overflow vulnerabilities are serious threats to computers.
Therefore, techniques to detect the execution of malicious code are required when taking measures to prevent
intrusion using such software vulnerabilities. An intrusion detection system is an example of such a defence
mechanism against such attacks. The improvement in both false positive and false negative ratios, together
with reduction of overhead are the problems to be overcome in an intrusion detection system. This paper
presents the design of a user level intrusion detection system. This system can monitor the execution of target
programs at both user and kernel levels. The access control function is divided between user and kernel.
Access rights may also be checked with appropriate timing and with low overhead.

1 INTRODUCTION

Improvement in the performance of computers has
lead to their widespread use. Computers connections
to networks have also increased with widespread use
of the Internet. In addition, with the spread of com-
puters and the Internet the numbers of reports of soft-
ware vulnerabilities increase year by year. In particu-
lar, viruses and worms using buffer overflow vulner-
abilities pose serious threats to computers. For ex-
ample, viruses and worms spread rapidly through the
Internet and, as a result, many computers will be se-
riously damaged. Therefore, various defense mecha-
nisms against such malicious programs have been ac-
tively studied.

Most current software possesses potential vulnera-
bilities that are represented by buffer overflow vulner-
abilities. For example, much vulnerability has been
found in most of open source software. Therefore, in
order to prevent intrusion using such software vulner-
abilities, techniques that can detect the execution of
malicious code are required.

Intrusion detection systems (IDS) represent an ex-
ample of such techniques. IDS monitor the behavior
of programs and detect malicious behavior such as the
abuse of software vulnerabilities. There are two types
of intrusion detection systems. An anomaly detection

system (Sekar et al., 2001) is based on a database con-
taining knowledge of the normal behavior of the sys-
tem being monitored. However, it is difficult to gen-
erate such knowledge of normal behavior for a sys-
tem. One of the advantages, however, is that system
does not require a database of attack signatures that
must be kept up-to-date. One of the disadvantages is
that the false positive ratio is significant. It alarms
on detection of an unusual event. By contrast, a mis-
use detection system is based on the database of pre-
viously known attack signatures. One advantage is
that the alarms contain diagnostic information about
the cause. One of the disadvantages is that system
cannot detect new attacks that are not contained in
the database. In intrusion detection systems, the im-
provement in both false positive and false negative ra-
tios, together with reduction of overhead, is the prob-
lems. As a consequence, monitoring the execution of
the target program with appropriate timing and the re-
duction in verification time both are required to solve
such problems.

Curry (Curry, 1994) developed a set of tools named
Shared Library Interposer (SLI) that works for dy-
namic libraries. SLI has the loader resolve addresses
as a wrapper of the library function. After an address
resolution, SLI calls the real library function. One
of the advantages is that an accurate trace of call se-

263
Tabata T. and Sakurai K. (2004).
DESIGN OF INTRUSION DETECTION SYSTEM AT USER LEVEL WITH SYSTEM-CALL INTERPOSING.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 263-268
DOI: 10.5220/0001397602630268
Copyright c© SciTePress

���������	�
��� �

� �	� ��� �����	��
� � ��
�� �

����
�� ������� � ��� � �

������� � � ������
�� � �
� � � �!��� � "#� ��
�� $ ���� � � ���

Figure 1: Interposed library.

quences can be logged.
Kuperman et al. (Kuperman and Spafford, 1998)

applied Curry’s technique to IDS for detecting buffer
overflow. Figure 1 shows a sequence when a library
call is encountered. The IDS acquires audit data at
user level using an interposed library. Every library
function is thus intercepted. The interposed library
can acquire audit data at the user level without need-
ing to modify either application or system libraries.
The authors show the cost of audit on their approach
is low, and report that this approach is suitable for
buffer overflow detection.

However, in their system there are two problems.
The first problem is that malicious attackers can easily
bypass the interposed library, because only the library
function is checked. If the attacker calls any system-
call directly, the system-call will not be checked by
their system. The secondly, every library function is
checked every time. As a result, the interposed library
adds an overhead to every library function.

This paper discusses an intrusion detection system
with interposed system-calls and a user level access
control mechanism using a dynamic linker. This in-
trusion detection system resolves the first problem de-
scribed above. The system is based on the access con-
trol mechanism at the user level. It operates in con-
junction with the interposing of system-calls. As a re-
sult, our intrusion detection system can detect system-
calls that bypass the library interposition.

The proposed access control mechanism can re-
solve the second problem described above. The
mechanism monitors the execution of target programs
at appropriate timing using dynamic linker. Dynamic
linking is employed, such that a program and a partic-
ular library referenced by the program are not com-
bined together by the linker at link-time. In the pro-
posed mechanism, a dynamic linker resolves a refer-
ence to call the access control module. The module
runs at the user level and decides to grant or deny the
library function after the check of access rights. If the
module denies the access, the library function is not
called. In addition, the checkpoint of library functions
can be selected arbitrarily. Important library functions

that call system-calls, can be controlled by the mech-
anism with a little overhead. The reference of non-
important routines that do not call system-calls such
as math functions, are resolved to call the module. As
a result, the library functions are called directly with-
out overhead. Generally, library functions that cause
security problems invoke system-calls. Therefore, it
is believed that this approach is reasonable.

2 RELATED WORK

IDS are an example of a defense mechanism against
attacks that abuse software vulnerabilities (Wagner
and Dean, 2001) (Hofmeyr et al., 1998) (Wagner and
Soto, 2002). IDS observe program execution and
detect malicious behavior of the program. As men-
tioned previously, because an anomaly detection sys-
tem is based on a normal behavior database, the dis-
advantages is that the false positive ratio is significant.
Therefore, main issue of intrusion detection systems
is reduction of overhead and false positive and false
negative ratios.

Sekar et al. (Sekar et al., 2001) reported an over-
head due to the execution of learning and/or detection
code of between 3% and 4%. Sekar et al. also re-
ported that the overhead due to system-call interposi-
tion is between 100% and 250%. In addition, Ooyama
et al. (Oyama et al., 2003) reported that the run-time
of httpd increased 47%. These IDS are based on the
kernel. By contrast, the IDS proposed in this paper is
based on both the user and the kernel. Kuperman et
al. reports that the overhead is between 3.2%. Thus,
IDS based on user level possess overhead advantages.
However, Kuperman reports the overhead of 57.2% in
the worst case.

Jain et al. (Jain and Sekar, 2000) presented an ap-
proach to developing a user-level infrastructure for
system-call interception and extension. This approach
requires a process switch to intercept system-calls. As
a result, there is a high overhead. The mechanism
proposed here does not involve process switching to
intercept library functions and system-calls.

3 REQUIREMENT OF
INTRUSION DETECTION
SYSTEM

3.1 Problem

Most of the existing kernel based IDS detect intrusion
using history of system-call sequence. In the IDS, the
false positive ratio is a crucial problem. The reduction
in the false positive ratio facilitates their introduction

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

264

%!&�')(+* , - .
/+021 , '�.

%3.54�- & 67'#8 1 1

9 4#&2*

: &2* ;)& 1

< /�/21 , '58)- , 0 ;
/ * 0+= * 826

%3.54�- & 67'#8 1 1
45&2* >2, '#&

? , @2* 8 * .

A ;#- & * /)0 4#&�B
1 , @�* 8 * .

Figure 2: An intrusion detection system based on Curry’s approach.

and maintenance. Ooyama et al. (Oyama et al., 2003)
presented a mechanism to analyze functions for the
reduction in the false positive ratio in the kernel. It
achieves the capture of the behavior of the program in
detail. However, the cost of analysis of the behavior
is not sufficiently low to allow detection in real-time.
The reason is as follows. The mechanism searches the
stack recursively when a system-call is called. This
adds to the cost penalty of the search. In other words,
the reason for the time penalty is the need to search
the stack to analyze the sequence of library functions.

3.2 Requirement

It is proposed that low overhead detection and fine ac-
cess control are required for intrusion detection sys-
tems and access control mechanisms.

Low overhead is necessary for real-time detection
and real-time access control. Fine access control im-
plies that detailed information of program behavior is
effective in intrusion detection systems or other ac-
cess control systems.

4 PROPOSED INTRUSION
DETECTION SYSTEM

4.1 Overview

It is proposed that the inspection of library functions
is effective and convenient, because functions calls
are too small to audit and system-calls are too large
to audit appropriately. As mentioned above, existing

kernel based systems search a stack to detect library
functions recursively. These systems involve searches
of all functions and result in an increase in audit cost.
These systems also audit library functions in non-real-
time, because the searches are delayed until a system-
call is made. Therefore, an access control mechanism
at the user level is required to audit library functions
in real-time.

An access control mechanism at user level is pro-
posed using a dynamic linker. The dynamic linker re-
solves a reference at user level when a function is first
called. The proposed mechanism uses the resolution
of reference. It can decide whether it should interpose
into the library function. In the proposed mechanism,
the access control module is called before a routine is
called. This module can decide whether to grant or
deny the routine call.

As mentioned previously, Curry’s approach uses li-
brary interposition. Figure 2 shows an intrusion de-
tection system based on Curry’s approach. In this
paper, an intrusion detection system at user level
is also proposed to be combined with interposition
of system-calls. The system is based on an access
control mechanism using dynamic linker which co-
operates with a system-call access control mechanism
that exists in the kernel. This approach also uses a dy-
namic linker run-time program. The system prevents
an attacker from bypassing library interposition. Fig-
ure 3 shows the proposed intrusion detection system.

DESIGN OF INTRUSION DETECTION SYSTEM AT USER LEVEL WITH SYSTEM-CALL INTERPOSING

265

CED#FG H�IKJ�L�M ML)J�J�H)F�F
NPO2Q�G R O�M�ISO)T�U+M H

CVH+J5U)R W G D
X O�M W JD

CED#FG H�IKJ�L�M M

Y F�H�R

Z H�R Q#H�M

[X)X M W J�L#G W O2Q
X R O5\ R L�I

CED5FG H2I]J�L�M M
F�H2R ^)W J�H

_ W `+R L�R D

[J�J�H)F�FaNPO�Q�G R O�M
b O+T�U)M H

c d R O X O)F�L2MC3J5e5H�IfH�g

C3H)J5U)R W G D
X O�M W JD

h O�Q#i W I X O�R G L�Q�G
_ W `�R L�R DjR O2U�G W Q#H

k I X O2R G L2QG
_ W `+R L�R DjR O�U�G W Q#H

Figure 3: Overview of the proposed intrusion detection system.

4.2 Processing of Dynamic Linker on
Program Execution

There follows a brief description of dynamic linker.
Most current operating systems support Executable
and Linking Format (ELF) (Levine, 2000) as the ob-
ject file format and dynamic linking to delay the pro-
cessing of linking by program execution. In operating
systems supporting dynamic linking, most of refer-
ences are not resolved before programs start. When
unresolved references are referred, the dynamic linker
places information into the executable that informs
the loader of the code for shared object module. In
contrast, a run-time linker finds and binds the refer-
ences at run-time before the program starts.

ELF is supported in current UNIX and Linux as
an object file format. In program execution environ-
ments that support ELF and dynamic linking, a run-
time linker is called to resolve undefined references,
when a library function is first called. After the reso-
lution, the run-time linker is not called, and the func-
tion is called directly.

4.3 Address Resolution

In this subsection, the processing of address resolu-
tion is described. Figure 4 shows address resolution in
general operating systems. In general, operating sys-
tem such as Linux, the run-time dynamic linker pro-
gram is called when a library function is first called.
The run-time program finds the symbol of the library
function and stores the address of the symbol into
Global Offset Table (GOT) entry that corresponds to
the Procedure Linkage Table (PLT) entry. After the
address resolution, the library function is called di-

l#m n�om p�q r�s t�m pm u

l#rwv

x2y�v

l#rwv

x2y�v

l#r v

x2y�v

l#r v

x2y�v

z#n{ | s }w~v�~	� |
� ~�o�q ~} |

�5pw| p
��~�o�q ~} |

v�~	� |
� ~	oq2~} |

�#p	| p
��~	oq ~�} |

Figure 4: Address resolution in general operating systems.

rectly without executing the dynamic linker run-time
program.

Figure 5 shows the processing of the proposed ad-
dress resolution. In the first address resolution, the
run-time program of dynamic linker is called in the
same way. Next, the run-time program finds the sym-
bol of the library function and stores the address of ac-
cess control module into GOT entry that corresponds
to the PLT entry. Then the run-time program stores
the address of the symbol into local table in the dy-
namic linker. After the address resolution, the ac-
cess control module is called before the library func-
tion is called. This module can gather the informa-
tion of the library function call and decide whether to
grant or deny the library function call. The module
calls library function, when the library function call
is granted.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

266

�#� ����� �� �	� ��� ��� �

���w�

�2� �

�#� �

�2� �

�#� �

�2� �

�#�� � � � ����w� �
� �	��2��� �

�5�w� �
� �	��2��� �

�)� � � � � � �� � � �� �2�	��	� �

���w� �
� �	��2��� �

�#�	� �
� �	��� ��� �

Figure 5: The proposed address resolution.

4.4 Selection of Address Resolution

Access control involves some overhead. Thus, it is
desirable that the overhead of access control is kept
to a minimum. Curry’s approach interposes every li-
brary function call. Here, selectable interposition is
presented, using dynamic linker.

The operating systems provide many functions as
system-calls. Thus, system-calls can have an effect
on the security of computer systems. On the other
hand, not every library function executes system-
call. It is important to control library functions in-
volving the execution of a system-call. The library
functions involving the execution of system-call are
named important library routines in figure 3. Non-
important library functions do not involve the execu-
tion of system-calls.

When an important library function is called first,
the address is resolved. When a non-important library
is called first, the address is resolved by a general
approach. The run-time dynamic linker program de-
cides whether use the proposed technique or a general
approach. In the proposal, there is no overhead when
non-important routine is called after the address reso-
lution. Therefore, this proposal is able to reduce the
overhead of access control.

4.5 Access Control Module

The access control module exists within the dynamic
linker. This module is called before the library func-
tion calls and can gather the state of library function
calls. The states consist of the name of the caller rou-
tine, the name of the callee routine and the string of
arguments of the callee routine. In addition, users can
write the rules of access control. The module decides
whether to grant or deny a library function call by fol-
lowing it. Anomaly detection or misuse detection can
both be implemented in the proposed system.

���+�2 ¡+¢5¢f¢5£)¤�¥#¡

¦� §)¨E ¤2©

ªP« ¤ ¡��¬+® ¯� ¤2 °

±�°�²5¤ ©³® ¥³¬+® ²+´�¡

µ3¡2 ²5¡ ¶

ª °5¢�· ¡2©j¸ ¥#¤ ¶ ¶
¤�¥#¥#¡+¢#¢S¥#§2²#· §2¶#©j§��2¹+¶ ¡

��¥#¥#¡�¢�¢S¥#§2²#· §2¶5©S§��2¹+¶ ¡

ºP¢#¡2

µ3¡2 ²)¡2¶

Figure 6: A system-call access control module.

4.6 System-call Access Control
Module

The interposition mechanism at user level can be by-
passed by executing a system-call directly. To prevent
an attacker from bypassing the interposition mecha-
nism at the user level, a system-call access control
function is required in the kernel. Introducing the
interposition mechanism at the user level renders the
implementation of system-call access control module
a simple task.

Recently, most attackers abuse buffer overflow vul-
nerabilities. A program that has some vulnerability
can be easily hijacked. Using the buffer overflow vul-
nerabilities, the attacker sends a malicious code. The
code may include a direct system-call.

For this reason, Figure 6 describes a system-call
access control module. This module traps the address
of the system-call. If the address is included within
shared library text segment, the module knows that
the system-call request is safe. All of the important
library function calls have already been checked by
the access control module in the dynamic linker. If
the address is included within the stack segment or
heap segment of a program, the request of the system-
call is suspicious. As described above, the system-call
access control module checks the address of the code
executing the system-call. Thus, the overhead due to
execution of the codes of system-call access control
module is small.

DESIGN OF INTRUSION DETECTION SYSTEM AT USER LEVEL WITH SYSTEM-CALL INTERPOSING

267

4.7 Advantage of Proposed
Mechanism

1. Library function calls may be intercepted with low
overhead.

2. User level access control mechanisms are se-
lectable. Audit is only important for library func-
tion calls with low overhead. A non-important li-
brary function is called with no overhead after ad-
dress resolution.

3. An intrusion detection system is combined with
user and kernel modules. Using access control
module at user level simplifies the structure of
system-call access control module at kernel.

5 CONCLUSION

This paper has addressed the design of an intrusion
detection system at the user level with system-call in-
terposition. An access control mechanism has also
been proposed which uses a dynamic linker.

The proposed intrusion detection system uses this
access control mechanism. The overhead of the ac-
cess control process at the user level is low. However,
it can be seen that the access control mechanism at
user level can be easily bypassed. Thus, an intrusion
detection system at user level has been combined with
system-call interposition. As a result, proposed IDS
can prevent attacker from bypassing the interposition
mechanism. Proposed intrusion detection system pos-
sesses both low overhead and fine access control.

The feature of proposed access control mechanism
is selectable interposition using a dynamic linker.
Thus, it can be decided which library function should
be controlled.

ACKNOWLEDGMENT

This research was partly supported by the 21st Cen-
tury COE Program ’Reconstruction of Social Infras-
tructure Related to Information Science and Electrical
Engineering’.

REFERENCES

Curry, T. W. (1994). Profiling and tracing dynamic library
usage via interposition. In USENIX Summer 1994
Technical Conference.

Hofmeyr, S. A., Forrest, S., and Somayaji, A. (1998). In-
trusion detection using sequences of system calls. In
Journal of Computer Security, Vol.6, No.3.

Jain, K. and Sekar, R. (2000). User-level infrastructure for
system call interposition: A platform for intrusion de-
tection and confinement. In In ISOC Network and Dis-
tributed System Security.

Kuperman, B. A. and Spafford, E. (1998). Generation of ap-
plication level audit data via library interposition. In
CERIAS TR 99-11, COAST Laboratory, Purdue Uni-
versity, West Lafayette.

Levine, J. (2000). Linkers and Loaders. Morgan Kaufmann.

Oyama, Y., Wei, W., and Kato, K. (2003). Modularizing
normal behavior databases in anomaly detection sys-
tems. In IPSJ Transactions on Advanced Computing
Systems, Vol.44CNo.SIG 10(ACS 2).

Sekar, R., Bendre, M., Bollineni, P., and Dhurjati, D.
(2001). A fast automaton-based method for detecting
anomalous program behaviors. In IEEE Symposium
on Security and Privacy.

Wagner, D. and Dean, D. (2001). Intrusion detection via
static analysis. In Proc. of the 2001 IEEE Symposium
on Security and Privacy.

Wagner, D. and Soto, P. (2002). Mimicry attacks on host
based intrusion detection systems. In Proc. of Ninth
ACM Conference on Computer and Communications
Security.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

268

