
INTEGRATING A SIGNATURE MODULE IN SSL/TLS

Ibrahim Hajjeh, Ahmed Serhrouchni
Ecole Nationale Supérieure des Télécommunications - LTCI-UMR 5141 CNRS, France

Keywords: SSL/TLS, e-commerce, non-repudiation, data signature.

Abstract: SSL/TLS1 is currently the most deployed security protocol on the Internet. SSL/TLS provides end-to-end
secure communications between two entities with authentication and data protection. However, what is
missing from the protocol is a way to provide the non-repudiation service. In this paper, we describe a
generic implementation of the non-repudiation service as an optional module in the SSL/TLS protocol. This
approach provides both parties with evidence that the transaction has taken place and a clear separation with
application design and development. We discuss the motivation for our approach and our proposed
architecture.

1 There are some slight differences between SSL 3.0 and TLS 1.0, this paper will refer to the protocol as SSL/TLS

1 INTRODUCTION

SSL stands for secure socket layer (Freier, 2000),
was first developed by Netscape Corporation in
1994, and standardized by the Internet Engineering
Task Force “IETF” in 1998 as we know the
Transport Layer Security protocol or “TLS” (Dierks,
1999). SSL/TLS is designed to make use of TCP to
provide a reliable end-to-end secure service with
confidentiality, data integrity and authentication for
one or both entities.

Today, SSL/TLS is the most deployed security
protocol. This is due mainly to its native integration
in browsers and web servers. However like other
security protocol (IPSEC (Kent, 1998), SSH
(Ylonen, 2003), etc.), SSL/TLS does not provide a
non-repudiation service. This is left to the
application layer. The application itself has to
manage the exchange of signed data and its storage
(Wichert, 1999).

In this paper we propose a generic
implementation of the signature service in SSL/TLS
called “SSL-SIGN” that can be used with any
application, in a transparent method and with the
minimum of programmer effort. Our approach is

“generic” because different type of items, such as,
data, signature format, or value can be exchanged
during the Extended SSL/TLS handshake. To keep
interoperability with existing SSL/TLS versions,
SSL-SIGN will be negotiated using the Extended
Client and Server Hello messages defined in (Blake-
Wilson, 2003) and data signature begins at the end
of Extended SSL/TLS handshake. In addition, SSL-
SIGN requires both entities to be authenticated using
their X.509 certificates (ITU-T, 1997). This will
guarantee that the signer of messages is always the
same as the pretended sender.

The rest of this paper is organized as follows. In
section 2 we discuss the motivation behind this
work. In section 3 we give a brief background
description of the Standard and Extended SSL/TLS
protocols. In section 4 we present the signature
module. In section 5 we discuss related work. To
conclude we propose an analysis of this solution and
its prospects, in particular in experimentation and
future deployment.

305
Hajjeh I. and Serhrouchni A. (2004).
INTEGRATING A SIGNATURE MODULE IN SSL/TLS.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 305-310
DOI: 10.5220/0001395903050310
Copyright c© SciTePress

2 MOTIVATION

Today, e-commerce applications have more specific
needs such as secure data storage and evidence
management. Implementing a non-repudiation
service in a security protocol will lead to more
interoperability between applications and can
provide standard evidence that critical transactions
have taken place. The proof is an S/MIME (Dusse,
1998), PKCS7 (Kalishi, 1998) or XML-DSIG
(W3C, 2000) signed data based on the proposed
IETF Internet standards. The main reasons for
integrating a signature module in the SSL/TLS
security protocol are as follows:

1. Modularity of TLS protocol
The first motivation of our proposal is the
modular nature of SSL/TLS protocol. Since
SSL/TLS is developed in four independent
protocols, our approach can be added without
any change to the SSL/TLS protocol and with
a total reuse of pre-existing SSL/TLS
infrastructure and implementation. To
demonstrate, we implemented SSL-SIGN as a
single package that can be optionally used to
deliver the non-repudiation service and
without any change in other SSL/TLS
protocols. Our work was also improved by the
standardization of (Blake-Wilson, 2003) that
we propose to use to keep interoperability with
existing SSL/TLS versions.

2. Generic non-repudiation service
The first objective of SSL-SIGN is to provide
a generic non-repudiation service that can be
easily used with protocols. SSL-SIGN will
minimize both design and implementation of
the signature service and that of the designers
and implementators who wish to use this
module. Thus, we choose to implement the
signature module with an SSL-like function
(ssl_sign_write & ssl_sign_read) with a
number of input parameters to simplify its
integration with applications.

3. Digital signature of E-business transactions

E-business applications are being more exigent
in security needs and there is an insistent demand
for an electronic equivalent to the handwritten
signature. The technologies needed for this
purpose (S/MIME, PKCS7v1.5, CMS (Housley,
2002)) have been available for several years but
are totally independent of the security protocols
in use like SSL and IPSEC. Integrating a data
signature module in a security protocol especially
SSL/TLS will lead to more secure transaction

between entities and can provide evidence that
can be later presented to a third party to resolve
any disputes between them.

3 THE SSL/TLS PROTOCOL

This section gives a short introduction into the
SSL/TLS protocol. It also explains the specification
of the SSL/TLS handshake protocol and the
proposed SSL/TLS Extensions. However, a detailed
specification of SSL/TLS and SSL/TLS Extensions
is outside the scope of this paper. We only introduce
the two concepts with enough detail to put the
description of our design and architecture in context.

3.1 Background

The standard SSL/TLS Protocol consists of two
layers: the TLS Record Protocol and the TLS
Handshake Protocol. The TLS Record takes
messages to be transmitted from various high level
protocols and encapsulates them in a secure
connection with data integrity and confidentiality.
The TLS Handshake Protocol allows the peer
entities located at both ends of the secure channel to
authenticate one another, to negotiate encryption
algorithms and to exchange secret session keys for
encryption. Once this phase in finished, a protected
connection is established.

3.2 The SSL/TLS Handshake
Protocol

TLS handshake is the most complex part of the
SSL/TLS protocol. In the TLS handshake, the two
entities will create a shared secret and authenticate
each other. However, in most cases, only the server
is authenticated.

In a typical full handshake (figure 1), the client
will begin the TLS exchange by sending a
ClientHello message which contains a random
number (R1), a session identifier (S_ID), a
compression list (compression_list) and a list of
supported cipher suites (cipher_list). The server
sends the ServerHello message that contains a
generated random number (R2), a session identifier
and the selected cipher suite. The server also sends,
his X509 certificate message containing the server’s
public key. The client verifies the server’s public
key and generates a 48-byte random number, called
the pre-master-secret, encrypts it using the server
public key and sends it to the server in the
ClientKeyExchange message. Upon receiving the
ClientKeyExchange message, the server decrypts the

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

306

pre-master secret using its server’s private key. At
this point, both client and server can calculate a
master-secret computed from the pre-master-secret
and the two exchanged random numbers. This secret
will serve after in deriving the symmetric keys used
in data encryption and authentication. In the last
exchange, the two entities exchange the finished
messages that contain a MAC of all exchanged
messages.

If the client’s certificate is required by the server
(the server send the CertificateRequest message),
then the client sends a CertificateVerify message
including its signature on the hash value of the pre-
master key combined with all past messages
exchanged in the current session.

With the present TLS Handshake, the server is
not able to know the requested client service till a

full handshake has occurred with the client. The
main objective of the TLS Extensions is to permit
the two entities to negotiate an optional service
during the first TLS handshake exchange.

3.3 The Extended TLS Handshake

TLS Extensions proposes a framework to control the
TLS handshake, and extended functions (Blake-
Wilson, 2003). It provides both generic extension
mechanisms for the TLS handshake client and server
hellos, and specific extensions using these generic
mechanisms. (Blake-Wilson, 2003) Defines two
generic messages called ExtendedClientHello and
ExtendedServerHello messages. These two messages
allow the two entities to negotiate new proposed
services in the first SSL/TLS exchange and before
opening a secured session. This work has also
resolved all compatibility problems between TLS
clients that want to negotiate our optional signature

module and servers that do not support this option,
and vice versa.

In an Extended TLS Handshake (figure 2), the
client sends the ExtendedClientHello message that
contains the standard ClientHello message and a
proposed extension list (Extension_list). If the server
accepts the proposed new functionalities, he will
respond with the ExtendedServerHello message with
the same Extension_list field sent by the client.

Since the ClientHello message defined in
TLSv1.0 can contain additional information and to
keep interoperability between TLS and the proposed
TLS Extensions, the ExtendedServerHello message
should be sent just in response to an
ExtendedClientHello message and any error in
message format will generate a fatal alert (Blake-
Wilson, 2003). The rest of this exchange is similar
to the standard TLS handshake.

In SSL-SIGN, a specific extension called
signature will be used to negotiate the non-
repudiation service between client and server.

4 OUR APPROACH: SSL-SIGN

4.1 Overview

The SSL/TLS protocol provides authentication and
data protection for communication between two
entities. However, what is missing from the protocol
is a way to provide the non-repudiation service.

The signature module or ‘SSL-SIGN’ is
integrated as a higher-level module of the TLS
Record protocol (figure 3). SSL-SIGN will be
optionally used if the two entities agree on it during
the Extended TLS handshake. When SSL-SIGN is
negotiated, the following steps are involved:

1. Exchanging SSL-SIGN initiation messages
and negotiates the signature format some
other parameters.

2. Authenticating both TLS client and server
with their X509 public key certificate

ClientHello (Ver, R1, S_ID, cipher_list, compression_list,
Extension_list)

ServerHello (Ver, R2, S_ID, cipher_list, compression_list,
Extension_list)

Client Server

Figure 2: Negotiation of Extended Client and Server

Hello messages

Figure 1: The SSL/TLS Handshake

INTEGRATING A SIGNATURE MODULE IN SSL/TLS

307

containing the X.509 signature and
encryption extensions.

3. Storing all exchanged and signed data after
the Extended TLS handshake.

The next sections will detail these steps

4.2 Client authentication

Because SSL-SIGN relies on the security properties
of the SSL/TLS session, especially for checking data
integrity, protecting against man-in-the-middle
attacks and preventing replay attacks, and because
the non-repudiation service is viewed as a stronger
version of data authentication service, client
authentications will be mandatory before allowing
then to sign the data. This will also protect the server
against Denial of Service (DOS) attacks, as we do
not force them to verify signed data coming from
anonymous users.

In SSL-SIGN, the server sends the
CertificateRequest message to the client requesting
from him a strong authentication with an X.509
certificate. Client will send his certificate in the
Certificate message and sign all exchanged
parameters with the SSL/TLS server. This can also
be used by the server as a proof of client
communication.

4.3 Digital signature and data storage

The objective of SSL-SIGN is to provide both
parties with evidence that can be stored and later
presented to a third party to resolve disputes that
arise if and when a communication is repudiated by
one of the entities involved. SSL-SIGN provides the
two basic types of non-repudiation service:

Non-repudiation with proof of origin
And non-repudiation with proof of delivery

The non-repudiation with proof of origin

provides the TLS server with evidence proving that
the TLS client has sent him the signed data at a
certain time. The non-repudiation with proof of
delivery provides the TLS client with evidence that
the server has received his signed data at a specific
time. Because SSL/TLS add GMT time in its first
exchange to protect negotiation against replay
attacks and because all handshake TLS are signed by
the client certificate, the time value can be stored
with the signed data as a proof of communication.
For B2C or B2B transactions, non-repudiation with
proof of origin and non-repudiation with proof of
receipt are both important. If the TLS client requests
a non-repudiation service with proof of receipt, the
server should verify and send back to client a
signature on the hash of signed data. All signed data
are enveloped in a new message with a 2-byte

header containing: the signature type (ex.
sign_with_proof_of_receipt), the content format (ex.
signed_smime_file) and the authentication method
(ex. x509_tlsclient_cert).

Figure 5 explains the different events for proving
and storing signed data. (Ford, 1994) Uses the term
“critical action” to refer to the act of communication
between the two entities. For a complete non-
repudiation deployment, 5 steps should be respected:

1- Requesting explicit transaction evidence
before sending data. Normally, this action is taken
by the SSL/TLS client

2- If the server accepts, the client will generate
evidence by signing data using his X.509
authentication certificate. Server will go through the
same process if the evidence of receipt is requested.

3 - The signed data is then sent by the initiator
(client or server) and stored it locally, or by a third
party, for a later use if needed.

4 - The entity that receive the evidence process
to verify the signed data.
The evidence is then stored by the receiver entity for a
later use if needed.

Figure 3: The SSL-SIGN Architecture

Figure 4: The SSL/TLS signature message

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

308

With this method, the stored signed data (or
evidence) can be retrieved by both parties, presented
and verified if the critical action is repudiated.

4.4 Initialising the SSL-SIGN module

In order to allow a TLS client to negotiate the
signature module, a new extension type should be
added to the Extended Client Hello and Server Hello
messages. TLS clients and servers may include an
extension of type ‘signature’ in the Extended Client
Hello and Server Hello messages. The
‘extension_data’ field of this extension will contain
a ‘signature_request’ where:

enum {
 pkcs7_1.5(0), smime (2), xmldsig(255);
 }ContentFormat;
struct {
 ContentFormat content_format;
 AuthMethode auth_meth;
 Boolean bool;
 Signature_type

sign_type<1..2^16-1>;
 } signature_request;
enum {
 x509cert(0), x509cert_url(1), (255);
 } AuthMethode;
enum {
 false(0), true(1);
 } Boolean;
opaque Signature_type<1..2^16-1>;

The client initiates the SSL-SIGN module by

sending the ExtendedClientHello with the
‘signature’ extension containing the signature type
(non-repudiation with proof of origin, etc), the
content format (PKCS7, S/MIME, XMLDSIG etc.),
a Boolean value set to true if the client wants to

negotiate the signature and false when he wants to
stop this service. The client sends his authentication
method (in this proposition, the client will use his
X509 authentication certificate to sign the
exchanged data after the TLS handshake phase, in
other scenarios, a client can use a new certificate, an
RSA public key or a delegated attribute certificates.
The server can reject the connection by sending a
fatal alert and closing the connection or accepting
the negotiation of this module. In the case where the
server accepts the requested service, it should
specify a list of cipher suite that supports data
signature (using RSA for example) and re-sends the
client extension in the ExtendedServerHello
message. Because the client authentication is
compulsory when negotiating SSL-SIGN, the server
sends his certificate, the certificateRequest and the
ServerHelloDone messages. The client will then
send his certificate and all necessary TLS parameters
to finish the TLS handshake negotiation with the
server.

4.5 Resuming SSL/TLS Handshake

SSL Resumed session is a fast SSL Handshake
defined to minimize the SSL cryptographic
operations and a significant number of SSL
messages (Kambourakis, 2002). In the SSL
Resumed session, the client will begin by sending in
its ClientHello message a non-null session ID. If the
server agrees to the resumed handshake, it will open
a secure session based on the old security keys
negotiated in a previous full handshake, otherwise,
the server will generate a different session ID value
and a full handshake will then takes place.

With SSL-SIGN, the SSL Resumed handshake
will also be used to manage the non-repudiation
service. In a real scenario, a client or an enterprise A
connects to a secure site using the standard TLS
handshake to purchase an order. After submitting all
necessary information, it will arrive at a new site
where payment should be confirmed and signature is
requested. At this point a new connection in opened
using the resumed handshake and non-repudiation
service is negotiated using the Extended client and
server hellos messages named respectively
ClientHelloSIGN and ServerHelloSIGN. If A was not
authenticated in his first SSL/TLS exchange or does
not support a signature algorithm, the server will
reject the connection and sends the HelloRequest
message. HelloRequest is a simple notification that
the client should begin the negotiation process anew
by sending a ClientHello message when convenient
(Dierks, 1999).

To stop the generation of evidence, client should
just negotiate a resumed handshake with

Figure 5: Different events for establishing a
complete non-repudiation service between the TLS

client and server.

INTEGRATING A SIGNATURE MODULE IN SSL/TLS

309

ClientHelloSIGN message with the value false in the
Boolean field. After the Extended TLS handshake,
all signed data is encapsulated in a new message
with a signature header containing the negotiated
parameters. This phase begin before data
fragmentation by the TLS Record protocol.

5 CONCLUSION AND FUTUR
WORK

We have presented the benefit of integrating a
signature module in SSL/TLS protocol to protect
exchanged data with a generic non-repudiation
service. We have implemented a first generic
module using the GNUTLS Transport security
Library (GNUTLS) that supports the TLS
Extensions standard.

There are several advantages of our module as
opposed to leaving the non-repudiation service to
applications. Our design adds signature before data
encryption this should not be considered when
seeing the low cost of the symmetric encryption and
decryption at the TLS record layer.

There are still some things that remain to be
added to our prototype in order to offer more
complete functionality:
- Our architecture needs to be integrated in client

web browsers like Mozilla web browser.
- The optional close of SIGN module is currently

not supported.
Finally, our architecture needs to be extended to

deal with X.509 attribute certificate. With the SSL-
SIGN module, attribute certificate will be used for
signature delegating, authentication and access
control mechanisms.

REFERENCES

Kambourakis, G., Rouskas, A.N. and Gritzalis, S., (2002).
Using SSL/TLS in Authentication and Key Agreement
Procedures of Future Mobile Networks. In IEEE
MWCN’02, 4th IEEE Int Conf on Mobile and

Wireless Communications Networks 2002, Stockholm,
Sweden.

Wichert, M., Ingham, D. et al., (1999). Non-repudiation
Evidence Generation for CORBA using XML. In
ACSAC’99, 15th Annual Computer Security
Applications Conference, Scottsdale, AZ, USA.

Jackson K., Tuecke S. and al., (2001). TLS Delegation
Protocol, In GGF1’01, First Global Grid Forum &
European Datagrid Conference, Amsterdam.

Kalishi B., (1998). Cryptographic Message Syntax
Version 1.5, [Request for Comments], IETF, No. 2315.

Dierks, T., (1999). The TLS Protocol Version 1.0,
[Request for Comments], IETF, No. 2246

Housley R., (2002). Cryptographic Message Syntax
(CMS), [Request for Comments], IETF, No. 3369.

Kent, S. and Atkinson, R., (1998). Security Architecture
for the Internet Protocol, [Request for Comments],
IETF, No. 2401.

Dusse, S., Hoffman, P. and al., (1998). S/MIMEv2
Message Spec, [Request for Comments], IETF, No.
2311.

Housley R., (2002). Cryptographic Message Syntax
(CMS), [Request for Comments], IETF, No. 3369.

Freier, A., Karlton, P. and Kocker, P., (1996). The SSL
Protocol, Version 3.0.

Blake-Wilson S., Nystrom, M. and al., (2003). Transport
Layer Security (TLS) Extensions, [Request for
Comments], IETF, No. 3546

Ford, W. and Baum M., (1994). Secure Electronic
Commerce: Building the Infrastructure for Digital
Signatures and Encryption, ISBN 0-13-476342-4.

GNUTLS project,
Available at: http://www.gnu.org/software/gnutls/
ITU-T Recommendation X.509, (1997). Information

Technology – Open Systems Interconnection – The
Directory: Authentication Framework.11

Ylonen, T. and Moffat, D., (2003). SSH Prot. Arch.
[Draft]“draft-ietf-secsh-architecture-15.txt”, IETF.

Figure 6: The SSL-SIGN Resumed Handshake client

and server.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

310

