
TOWARDS RUN-TIME PROTOCOL ANOMALY DETECTION AND
VERIFICATION

InSeon Yoo and Ulrich Ultes-Nitsche
Department of Computer Science, University of Fribourg,

Chemin du Musee 3, Fribourg, CH1700, Switzerland.

Keywords: Run-time Protocol Verification, Protocol Anomaly Detection, SDL, EFSM/CEFSM

Abstract: ‘How to verify incoming packets whether they follow standards or not?’ and ‘How to detect protocol anomalies
in real-time?’, we seek to answer these questions. In order to solve these questions, we have designed a
packet verifier with packet inspection and sanity check. In this work, we specify TCP transaction behaviours
declaratively in a high-level language called Specification and Description Language (SDL). This specification
will be then compiled into an inspection engine program for oberving packets. In addition, the SanityChecker
covers protocol header anomalies.

1 INTRODUCTION

Protocols are created with specifications, known as
RFCs, to dictate proper use and communication. An
anomaly is defined as something different, abnormal,
peculiar, or not easily classified. Protocol anomaly
refers to all exceptions related to protocol format and
protocol behaviour with respect to common practice
on the Internet and standard specifications. This in-
cludes network and transport layer protocol anoma-
lies in layer 3 and layer 4 and application layer proto-
col anomalies in layer 6 and layer 7.

Protocol anomaly detection is essential for under-
standing new attacks. Without names and prior docu-
mentation, new attacks can only be defended against
by understanding their intrusion methods and their ef-
fects. However, important to note is that not all threats
or attacks exhibit themselves as protocol anomalies.
Some types of application logic attacks, denial of ser-
vice (DoS) attacks, viruses, and reconnaissance meth-
ods all appear as perfectly legitimate network traffic.
In this paper, we present our packet verifier model
based on a specification of security protocols given
in a high-level language, called Specification and De-
scription Language (SDL). Then, we address how to
verify TCP protocol transition.

2 EXAMPLE CASES OF
PROTOCOL ANOMALIES

2.1 Ping of Death

Attackers sends a fragmented PING request that ex-
ceeds the maximum IP packet size(64KB), causing
vulnerable systems to crash. The idea behind the Ping
of Death and similar attacks is that the user sends a
packet that is malformed in such a way that the target
system will not know how to handle the packet. The
Ping of Death attack (Fyodor, 1996) sent IP packets
of a size greater than 65,535 bytes to the target com-
puter. IP packets of this size are abnormal, but appli-
cations can be built that are capable of creating them.
Carefully programmed operating systems could de-
tect and safely handle abnormal IP packets, but some
failed to do this. ICMP ping utilities often included
large-packet capability and became the namesake of
the problem, although UDP and other IP-based proto-
cols also could transport Ping of Death.

2.2 Land Attack

The land attacks (CISCO, 1997) are also known as IP
DOS (Denial of Service) (Fyodor, 1997). The land at-
tack involves the perpetrator sending a stream of TCP
SYN packets that have the source IP address and TCP
port number set to the same value as the destination

299
Yoo I. and Ultes-nitsche U. (2004).
TOWARDS RUN-TIME PROTOCOL ANOMALY DETECTION AND VERIFICATION.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 299-304
DOI: 10.5220/0001395802990304
Copyright c© SciTePress

address and port number, i.e., that of the attacked host.
Some implementations of TCP/IP cannot handle this
theoretically impossible condition, causing the oper-
ating system to go into a loop as it tries to resolve
repeated connections to itself.

2.3 SYN flood attack

Figure 1: SYN Flooding

The client system begins by sending a SYN mes-
sage to the server (CERT/CA-1996-21, 2000). The
server then acknowledges the SYN message by send-
ing SYN-ACK message to the client like in Figure1.
The client then finishes establishing the connection by
responding with an ACK message. The connection
between the client and the server is then open, and the
service-specific data can be exchanged between the
client and the server.

The TCP SYN attack exploits this design by hav-
ing an attacking source host send SYN packets with
random source addresses to a victim host. The vic-
tim destination host sends a SYN ACK back to the
random source address and adds an entry to the con-
nection queue. Since the SYN ACK is destined for
an incorrect or nonexistent host, the last part of the
three-way handshake is never completed, and the en-
try remains in the connection queue until a timer ex-
pires, typically within about one minute. By gener-
ating phony SYN packets from random IP addresses
at a rapid rate, it’s possible to fill up the connection
queue and deny TCP services to legitimate users.

2.4 Teardrop attack

Teardrop attack (Hoggan, 2000) targets a vulnerabil-
ity in the way fragmented IP packets are reassembled.
Fragmentation is necessary when IP datagrams are
larger than the maximum transmission unit (MTU) of
a network segment across which the datagrams must
traverse. In order to successfully reassemble packets

at the receiving end, the IP header for each fragment
includes an offset to identify the fragment’s position
in the original unfragmented packet. In a Teardrop
attack, packet fragments are deliberately fabricated
with overlapping offset fields causing the host to hang
or crash when it tries to reassemble them. Under nor-
mal conditions packet fragments will yield a positive
integer value as can be derived from the diagram be-
low.

Figure 2: IP TearDrop Attack - Correct reassemble

However, the teardrop attack sends a fragment that
deliberatley forces the calculated value for the end
pointer to be less than the value for the offset pointer.
This can be achieved by ensuring that the second frag-
ment specifies a FRAGMENT OFFSET that resides
within the data portion of the first fragment and has a
length such that the end of the data carried by the sec-
ond fragment is short enough to fit within the length
specified by the first fragment. Diagramatically this
can be shown as follows:

Figure 3: IP TearDrop Attack - Incorrect reassemble

When the IP module performing the reassembly
attempts a memory copy of the fragment data into
the buffer assigned to the complete datagram, the
calculated length of data to be copied (that is the
end pointer minus the offset pointer) yields a neg-
ative value. The memory copy function expects an
unsigned integer value and so the negative value is
viewed as a very large positive integer value. The re-
sults of such an action depends upon the IP implemen-
tation, but typically cause stack corruption, failure of
the IP module or a system hang.

3 PACKET VERIFIER MODEL

The purposes of the packet verifier are validating
compliance to standards, and validating expected us-
age of protocols e.g. protocol anomaly detection. The
packet verifier checks the protocol header of pack-
ets, verifies packet size, checks TCP/UDP header

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

300

Figure 4: Components of the Packet Verifier

length, verifies TCP flags and all packet parame-
ters, does TCP protocol type verification, and anal-
yses TCP Protocol header and TCP protocol flags.
In addition, the packet verifier contains an inspec-
tion engine like in Fig.4, including an observer and
an main object model, to validate expected usage of
protocols with SDL (the Specification and Descrip-
tion Language) (ITU-T, 1992) specifications. SDL
specification defines the possible behaviours of pro-
tocols. While investigating the encoded packets, the
observer/SDL-parser validates whether or not each
sequence of packets follows what is required by the
SDL specifications.

3.1 Protocol Specification

In our work, we have abstracted from our state ma-
chine specification (see Figure5) to capture only the
essential details of TCP protocols. Using a more ab-
stract specification, where the state machines accept
a superset of what is permitted by the standards, and
is still sufficient to deal with incomplete protocol runs
meeting the standards (such as in the case of the SYN
flood attack). We present a specification of the TCP
state machine in this section. In order to achieve the
goal of identifying TCP transition invariants for a set
of reachable states, our method first searches through
all the reachable states from the initial state to find the
invariants. It then reduces the number of the searched
states. As the number of the searched states reduced,
the number of invariants increases.

A TCP connection is always initiated with the
three-way handshake, which establishes and negoti-
ates the actual connection over which data will be
sent. The whole session begins with a SYN packet,
then a SYN/ACK packet and finally and an ACK
packet to acknowledge the whole session establish-
ment. Our TCP specification is depicted pictorially in

Figure 5. A new session starts in the LISTEN state.
Data transfer takes place in the connection ESTAB-
LISHED state. If the TCP connection is initiated from
an external site, then the state machine goes through
SYN RCVD and ACK WAIT states to reach the ES-
TABLISHED state. If the connection is initiated from
an internal machine, then the ESTABLISHED state
is reached through the SYN SENT state. In order to
tear down the connection, either side can send a TCP
segment with the FIN bit set. If the FIN packet is
sent by an internal host, the state machine waits for
an ACK of FIN to come in from the outside. Data
may continue to be received till this ACK to the FIN
is received. It is also possible that the external site
may initiate a closing of the TCP connection. In
this case we may receive a FIN, or a FIN + ACK
from the external site. This scenario is represented
by the states FIN WAIT 1, FIN WAIT 2, CLOSING,
TIME WAIT 1, and TIME WAIT 2 states. Our state
machine characterizes receive and send events al-
together to understand and to check properly. If
the connection termination is initiated by an external
host, note that the TCP RFCs do not have the states
CLOSE WAIT, LAST ACK WAIT, and LAST ACK
since they deal with packets observed at one of the
ends of the connection. In that case, it is reasonable
to assume that no packets will be sent by a TCP stack
implementation after it receives a FIN from the other
end. In our case, we are observing traffic at an inter-
mediate node, e.g. firewall, so the tear down process
is similar regardless of which end initiated the tear
down. To reduce clutter, the following classes of ab-
normal transitions are not shown: conditions where
an abnormal packet is discarded without a state tran-
sition, e.g., packets received without correct sequence
numbers after connection establishment and packets
with incorrect flag settings. Beause these parts will
be checked by the SanityChecker.

3.2 Protocol SanityChecker

To cover other protocol aspects apart from TCP state
specification, we are building a sanity checker. This
performs layer 3 and layer 4 sanity checks. These in-
clude verifying packet size, checking UDP and TCP
header lengths, dropping IP options and verifying the
TCP flags to ensure that packets have not been manu-
ally crafted by a malicious user, and that all packet pa-
rameters are correct. In the IP protocol, according to
the Internet Protocol Standard (RFC791, 1981), an IP
header length should always be greater than or equal
to the minimal Internet header length (20 octets) and
a packet’s total length should always be greater than
its header length. IP address checks will also be im-
portant since land attacks use the same IP address for
source and destination. According to the TCP stan-
dard (RFC793, 1981), neither the source nor the des-

TOWARDS RUN-TIME PROTOCOL ANOMALY DETECTION AND VERIFICATION

301

Figure 5: TCP Protocol State Machine

tination TCP port number can be zero, and TCP flags,
e.g. URG and PSH flags, can be used only when a
packet carries data. Thus, for instance, combinations
of SYN and URG or SYN and PSH become invalid.
In addition, any combination of more than one of the
SYN, RST, and FIN flags is also invalid.

SanityChecker examines every packet within a 10
second window, and at the end of each window it
will record any malicious activity it sees using sys-
log. SanityChecker currently detects some attacks; all
TCP scans, all UDP scans, SYN flood attacks, Land
attacks, and ping of death attacks. SanityChecker as-
sumes any TCP packet other than a RST may be used
to scan for services. If packets of any type are re-
ceived by more than 7 different ports within the win-
dow, an event is logged. The same criteria are used for
UDP scans. If SanityChecker sees more than 8 SYN
packets to the same port with no ACK’s or FIN’s asso-
ciated with the SYN’s, a SYN flood event is logged.
Any TCP SYN packets with source and destination
address and ports the same is a identified as a land at-
tack. If more than 5 ICMP ECHO REPLIES are seen
within the window, SanityChecker assumes it may be
a Smurf attack (CERT, 1998). Note that this is not a
certainty. SanityChecker also assumes that any frag-

mented ICMP packet is bad, so this catches attacks
such as the ping of death. To make the certatinty
higher, this SanityChecker cooperateswith the proto-
col inspection engine with SDL. Furthermore, when
the SanityChecker cooperates with the protocol in-
spection engine, this can work as a sequence verifier
to matches the current TCP packet’s sequence num-
bers against a state kept for that TCP connection. For
example, in teardrop attack case, fragmented pack-
ets can be dealt with packet’s IP id, and sequence.
The inspection engine with SDL examines all packet
transitions and remember IP id, and sequences, so the
SanityChecker can detect reassemble problems with
this engine.

4 GENERATING THE STATE
MACHINE SPECIFICATION

We made the specification by hand, our next step is
applying SDL to accomplish this specification. SDL
is an International Telecommunication Union (ITU)
standard, based on the concept of a system of Com-
municating Extended Finite State Machine (CEFSM)

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

302

Model (E.Hopcroft and D.Ullman, 1979). To under-
stand how SDL can work based on the CEFSM, we
address the dynamic semantics of the finite state ma-
chine, and SDL underlying model in this section.

4.1 Specification Development

We present how we specify TCP state transition with
CEFSM in this section. A CEFSM is defined as a 6-
tuple < S, s0, E, f, V, X >, as we mentioned above.
Where, S is a set of states, s0 is an initial state, E is
a set of events with their parameter lists, f is a state
transition relation. V is a set of local variables along
with their types and initial values, if any. X is a set
of signals. For a state, an input event, and a predicate
composed of a subset of V, the state transition rela-
tion f has a next state, a set of output events and their
parameters, and an action list describing how the lo-
cal variables are updated. The purpose of SDL in our
project to verify whether the TCP transition follows
the standards. To do this, we made very simple TCP
transition using SDL based on Figure 5. For TCP state
transition, our CEFSM is like following:

• S = { listen, syn rcvd, syn sent, ack wait, estab-
lished, fin wait 1, fin wait 2, closing, close wait 1,
close wait 2, time wait, last ack wait, last ack,
closed }

• s0 = listen
• E = { send(ip id, flags), recv(ip id, flags)}
• f : { f(listen, recv(ip id, SYN), ip seq per id =

0) -> (syn rcvd, ip seq per id = ip seq per id +
ip seq, SYN, ACK), f(listen, send(ip id, SYN),
SYN, ip seq per id != 0) -> (syn sent, ,), }

• V = ip seq per id, ip seq
• X = ACK, SYN, FIN

In this SDL specification, Timeout, and other flags
e.g., RST, PSH, URG are not included. Timeout and
RST, PSH, URG flags can be dealt with low-level
implementation part. To detect packet fragmenta-
tion, the SDL specification part can tell the packet se-
quence and proper flag, and low-level implementation
part cooperate with this SDL, other flag combination,
and timeout part. Figure 6. shows the StateTransition
process which we built in SDL. Like SDL-GR(Figure
6.), sdl-PR is also in [Table 1].

5 CONCLUSION

We have discussed protocol anomalies and address a
packet verifier model. The purposes of the packet ver-
ifier are to validate compliance to standards, and to
validate expected usage of protocols, especially pro-
tocol anomaly detection. Considering performance in

Table 1: Part of SDL-PR Source in the process StateTransi-
tion

PROCESS StateTransition ;
NEWTYPE PacketInfo
STRUCT
ip Integer;
seq Integer;
flag TCPFlags;
OPERATORS
Unexpected: Integer, TCPFlags -> PacketInfo;
SanityCheck: Integer, Integer -> PacketInfo;
ENDNEWTYPE;
DCL pkt PacketInfo;
DCL tcp id, tcp seq, tcp seq per id Integer := 0;
DCL tcp flag TCPFlags;
DCL cur process PId; /* current process */
Timer t;

START;
NEXTSTATE idle ;
STATE syn sent ;
INPUT Packet(tcp id, tcp seq, tcp flag) ;
TASK pkt := SanityCheck(tcp id, tcp seq) ;
DECISION tcp flag ;
(ACKFIN):NEXTSTATE close wait 2 ;
(ACKSYN):NEXTSTATE established ;
(SYN): NEXTSTATE syn rcvd ;
ELSE: TASK pkt := Unexpected(tcp id, tcp flag) ;
NEXTSTATE - ;
ENDDECISION;
ENDSTATE;
STATE syn rcvd ;
INPUT NONE;
OUTPUT ROP(tcp id, ACKSYN) to SENDER ;
NEXTSTATE ack WAIT ;
ENDSTATE;

real-system, we are implementing a SanityChecker to
cover protocol header anomalies, and using SDL, we
specify TCP transition behaviours, the specification
will then be compiled into an inspection engine pro-
gram for observing packets. At the moment, we spec-
ified TCP protocol transition. Through this state ma-
chine, we will implement the inspection engine. This
will be our future work. We believe that this protocol
anomaly analysis and the packet verifier model will be
useful to detect protocol anomalies and verify proper
usage of protocols.

TOWARDS RUN-TIME PROTOCOL ANOMALY DETECTION AND VERIFICATION

303

Figure 6: Process StateTransition of the TCP Protocol State Machine in SDL

REFERENCES

CERT (1998). Advisory ca-1998-01 smurf ip denial-of-
service attacks. In Online Publication.

CERT/CA-1996-21 (2000). Advisory ca-1996-21 tcp syn
flooding and ip spoofing attacks. In Online publica-
tion.

CISCO (1997). Security advisory: Tcp loopback dos attack
(land.c) and cisco devices.

E.Hopcroft, J. and D.Ullman, J. (1979). Introduction to Au-
tomata Theory, languages, and computation. Addison
Wesley.

Fyodor (1996). Ping of death attack. In INSECURE.ORG.

Fyodor (1997). The land attack(ip dos). In ENSE-
CURE.ORG.

Hoggan, D. (1994-2000). Teardrop attack. In The Internet
Book: Introduction and Reference.

ITU-T, C. (1992). Recommendation Z.100: Specification
and Description Language (SDL). General Secre-
tariat, Geneve, Switzerland.

RFC791 (1981). Internet protocol. In DARPA Internet Pro-
gram Protocol Specification.

RFC793 (1981). Transmission control protocol. In DARPA
Internet Program Protocol Specification.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

304

