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Abstract: In the future Internet, different applications such as Voice over IP (VoIP) and Video-on-Demand (VoD) arise
with different demands on Quality of Service (QoS). Different kinds of service classes (e.g. gold, silver,
bronze) should be supported in a network node. In the network node, packets are queued using a multi-
queue system, where each queue corresponds to one service class. The customers of different classes will pay
different prices to network providers based on multi-class pricing models. In this paper, we considered the
optimization problem of maximizing the revenue attained in a network node under linear pricing scenario. A
revenue-aware scheduling approach is introduced, which has the closed-form solution to the optimal weights
for revenue maximization derived from revenue target function by Lagrangian optimization approach. The
simulations demonstrate the revenue maximization ability of our approach.

1 INTRODUCTION

Integrated packet switched service networks must
carry a wide range of different traffic types being
still able to provide performance guarantees to real-
time sessions such as Voice over IP (VoIP), Video-
on-Demand (VoD), or video-conferencing. Efficient
and effective communication needs careful Quality of
Service (QoS) design in the future multi-service In-
ternet. In QoS design, different demands of different
types of traffic classes (VoIP, VoD etc.) and different
prices paid by different classes (gold, silver, bronze
etc.) must be taken into account for giving plausible
and fair service.

Packet scheduling discipline is an important fac-
tor of a network node. The choice of the discipline
impacts the allocation of restricted network resources
among competing sessions of the communication net-
work. On the other hand, network operators can
handle resource reservations by using traffic differ-
entiation and design different kind of pricing strate-
gies for customers with different service classes. The
open question still arises: how to put these two is-
sues together. Pricing research in the networks has
been quite intensive during the last few years (e.g.,
(Mackie-Mason et al, 1994), (Kelly, 1994), (Kelly,
1997), (Kelly et al, 1998), (Courcoubetis et al, 2000),

(Paschalidis et al, 2000), (La et al, 2002), (Pascha-
lidis et al, 2002)) and also novel fair scheduling algo-
rithms have been proposed (e.g., (Parekh et al, 1993),
(Golestani, 1994), (Stiliadis et al, 1995), (Stiliadis et
al, 1996)), but combination of them have not been an-
alyzed widely.

Our research differs from the above studies by link-
ing pricing and queuing issues together and allocat-
ing network resources among competing sessions in
the context of revenue maximization. In a network
node, packets are queued using a multi-queue sys-
tem, where each queue corresponds to one service
class. The customers of different classes will pay
different prices to network providers based on multi-
class pricing models. In this paper, we considered
the optimization problem of maximizing the revenue
attained in a network node under linear pricing sce-
nario. A revenue-aware scheduling approach is intro-
duced, which has the closed-form solution to the op-
timal weights for revenue maximization derived from
revenue target function by Lagrangian optimization
approach. The simulations demonstrate the revenue
maximization ability of our approach.

The rest of the paper is organized as follows. In
Section 2, three pricing scenarios (linear, flat and
piecewise linear) are presented and the linear one
is generally defined. Revenue-aware scheduling ap-
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Figure 1: Traffic classification at the packet scheduler

proach is derived in Section 3, where the closed-
form solution to the optimal weights is presented in
the context of revenue maximization and the analytic
maximum revenue is also derived. Section 4 contains
simulation part demonstrating the revenue maximiza-
tion ability of our approach. Finally, in Session 5, we
present concluding remarks.

2 PRICING SCENARIO

Here three simple pricing scenarios are presented and
we believe that they are also the most used ones. First
some parameters and notions are defined. Let d0
be the minimal processing time of the scheduler for
transmitting 1-bit data from one queue to the output in
Fig. 1, i.e., d0 = 1/C if the processing capacity of the
scheduler is C bits/s. The number of service classes
is denoted by m. Literature usually refers to the gold,
silver and bronze classes; in this case, m = 3. The
mean delay for class i during one measurement pe-
riod is referred to as d̄i. For each service class, a pric-
ing function ri(d̄i) will be defined to rule the relation-
ship between the QoS provided by network providers
(mean delay in this case) and the payment of their cus-
tomers (revenue/penalty in this paper). Obviously, it
is non-increasing with respect to its mean delay d̄i.
Examples of pricing functions are given in Figs. 2, 3,
and 4, which show the most used pricing strategies:
linear, flat and piecewise linear models, respectively.
In this paper, our study concentrates on the revenue-
maximizing issue under linear pricing functions and
the analysis under flat pricing strategy is postponed to
its sequel. The solution to the piecewise linear pricing
model is a straightforward extension to the above two
ones. Specifically, Linear pricing model for class i is
characterized by the following definition.
Definition 1: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ...,m, bi > 0, ki > 0
(1)
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Figure 2: Three linear pricing functions. Horizontal axis:
mean delay; vertical axis: price.
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Figure 3: Three flat pricing functions. Horizontal axis:
mean delay; vertical axis: price.

is called linear pricing function, where bi and ki are
positive constants and normally bi ≥ bj and ki ≥
kj hold to ensure differentiated pricing if class i has
higher priority than class j (in this paper, we assume
that class 1 is the highest priority and class m is the
lowest one).

Fig. 2 depicts three linear pricing functions for
gold, silver and bronze classes and it is commented
more detailed below. For gold class, the pricing func-
tion r1(d̄1) = 200 − 10d̄1 means that when its mean
delay d̄1 is small, the price paid by gold class cus-
tomers is high - in this case, maximally 200 units
of money. It is natural that for the highest priority
class, constant shift b1 is selected to be the highest.
On the other hand, penalty paid to the highest pri-
ority class customers is also highest if the scheduler
fails to meet its minimum requirement of mean delay
(20 time units in this case) and the growing rate of
penalty along with mean delay depends on the slope
k1 (highest in this case). For example, if d̄1 = 30,
then r1(d̄1) = r1(30) = 200 − 10 ∗ 30 = −100,
i.e., the penalty is 100 units of money. Same obser-
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Figure 4: Three piecewise linear pricing functions. Hori-
zontal axis: mean delay; vertical axis: price.

vations hold for silver and bronze classes. For bronze
class, r3(d̄3) = 80− 2d̄3 means that the price paid by
that class customers is maximally 80 units of money.
In this case, constant shift b3is lowest. On the other
hand, the growing rate of penalty for bronze class will
also be lowest since its slope k3 = 2 is the lowest.

3 REVENUE MAXIMIZATION
APPROACH

Let us consider a packet scheduler fed by m Poisson
streams with arrival rates λ1, λ2, ..., λm as shown in
Fig. 1. We assume that in this paper the distribution
of packet length in all classes is exponential and use
L̄i to denote the mean packet size in bits in class i.
Let the weight allotted to class i be wi, i = 1, 2, ...,m.
Without loss of generality, only non-empty queues are
considered, and thus wi 6= 0. If some weight wi = 1,
then m = 1. Therefore, the natural constraint for the
weights is

∑m

i=1
wi = 1, wi ∈ (0, 1]. If the weight

assigned to class i is wi, class i in the scheduler can
be guaranteed to have a share of processing capac-
ity wi/d0 (bits/s) and mean service time of packets
in class i can be estimated by L̄id0

wi
; hence, the ana-

lytic form of mean delay ˆ̄di for class i packet can be
denoted as

ˆ̄di =
1

wi

L̄id0

− λi
=

L̄id0
wi − λiL̄id0

(2)

based on queueing theory. The natural constraint for
Eq. (2) is wi > λiL̄id0 due to the fact that delay can
not be negative.

We use the analytic form ˆ̄di in Eq. (2) to estimate
the real mean delay of class i packet d̄i during one
measurement period and define F to be the revenue
gained in a network node during that period as follows

when the linear pricing function in Eq. (1) is used:

F =

m
∑

i=1

ri(d̄i) =

m
∑

i=1

(bi −
kiL̄id0

wi − λiL̄id0
) (3)

As a result of the above definition, the issue of rev-
enue maximization in a packet scheduler can be for-
mulated as follows:

max F =

m
∑

i=1

(bi −
kiL̄id0

wi − λiL̄id0
) (4)

s.t.

m
∑

i=1

wi = 1, 0 < wi ≤ 1 (5)

wi > λiL̄id0 (6)

.
Theorem 1 For linear pricing functions, the globally
maximum revenue F is achieved by using the follow-
ing optimal weight

wi =

√

kiL̄i(1 +
∑

m
j=1

√
kjL̄j√

kiL̄i

λiL̄id0 −
∑m

j=1
λjL̄jd0)

∑m

j=1

√

kjL̄j
,

i = 1, 2, ...,m (7)
and it is unique when wi ∈ (0, 1].

Proof: Based on Equations (4) and (5), we can con-
struct the following Lagrangian equation.

P = P (w1, w2, ..., wm)

=
∑m

i=1
(bi − kiL̄id0

wi−λiL̄id0

) + σ(1−
∑m

i=1
wi) (8)

Set partial derivatives of P in Eq. (8) to zero:

∂P

∂wi
=

kiL̄id0
(wi − λiL̄id0)2

− σ = 0. (9)

It follows that

σ =
kiL̄id0

(wi − λiL̄id0)2
(10)

leading to the solution

wi =

√

kiL̄id0
σ

+ λiL̄id0, i = 1, 2, ...,m. (11)

Substituting Eq. (11) to Eq. (5), we get

m
∑

i=1

√

kiL̄id0
σ

+

m
∑

i=1

λiL̄id0 = 1

√
σ =

∑m

i=1

√

kiL̄id0

1−
∑m

i=1
λiL̄id0

(12)

And when
√
σ in Eq. (12) is substituted to Eq. (11),

the closed-form solution in Eq. (7) is obtained.
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Because of the constraint in Eq. (6) wi > λiL̄id0,
obviously,

m
∑

j=1

wj = 1 >
m

∑

j=1

λjL̄jd0 (13)

Hence, the closed-form solution in Eq. (7) wi > 0.
Moreover, based on (13), the following inequality
holds

λiL̄id0 −

√

kiL̄i
∑m

j 6=i

j=1

λjL̄jd0
∑m

j 6=i

j=1

√

kjL̄j
≤ 1

leading to in Eq. (7) the numerator less than the de-
nominator. Hence, we can conclude that 0 < wi ≤ 1.

To prove that the closed-form solution in Eq. (7)
is the only and optimal one in the interval (0, 1], we
consider second order derivative of P.

∂2P

∂w2

i

= − 2kiL̄id0
(wi − λiL̄id0)3

< 0 (14)

due to the constraint wi > λiL̄id0 in (6). Therefore,
the revenue F gained by a network provider is strictly
concave in the interval 0 < wi ≤ 1, having one
and only one maximum. This completes the proof.
Q.E.D.

Analytical form of the maximum revenue gained
during a measurement period can be expressed by the
optimal weights given in Eq. (7).

.
Theorem 2 When the optimal weights are used ac-
cording to Theorem 1, the analytic value of maximum
revenue obtained in a network node during the mea-
surement period is

Fmax =
m

∑

i=1

bi −
(
∑m

i=1

√

kiL̄i)
2d0

1−
∑m

i=1
λiL̄id0

(15)

Proof: When the optimal weights in Eq. (7) are sub-
stituted to Eq. (3), the maximum revenue obtained is

Fmax =
m

∑

i=1

(bi −
kiL̄id0

∑m

i=1

√

kiL̄i
√

kiL̄i(1−
∑m

i=1
λiL̄id0)

)

=

m
∑

i=1

(bi −
d0

√

kiL̄i
∑m

i=1

√

kiL̄i

1−
∑m

i=1
λiL̄id0

)

=

m
∑

i=1

bi −
(
∑m

i=1

√

kiL̄i)
2d0

1−
∑m

i=1
λiL̄id0

Q.E.D.

4 SIMULATIONS

In this section we present some simulation results to
illustrate the effectiveness of our approach for max-
imizing revenues under linear pricing functions. A

number of simulations have been conducted under
different parameter settings. In each case, we numer-
ically determine the optimal solutions using Theorem
1 and 2, and then we investigate through simulation
the benefits of our approach by comparing the rev-
enues obtained under our optimal weights with those
obtained under a natural scheme of proportional as-
signment. A representative set of these simulations
are presented herein. Throughout this section, we
shall focus on a packet scheduler with the number
of service classes m = 3 (namely, gold, silver and
bronze classes) and minimum processing time d0 =
10−6 s. The base arrival rates and the mean packet
sizes for three classes are provided in Table 1. A mul-
tiplicative load factor ρ > 0 is used to scale these
base arrival rates to consider different traffic intensi-
ties; i.e., λjρ is used in the simulations for class-j ar-
rival rate. As previously noted, we use a scheme that
proportionally allocates the weight among all service
classes for comparison with our revenue-maximizing
approach. Specifically, the proportional scheme as-
signs the weight for class i as follows:

wi =
λiL̄i

∑m

j=1
(λjL̄j)

, i = 1, 2, ...,m. (16)

Note that this proportional assignment scheme is a
natural way to allocate the scheduler processing ca-
pacity.

Table 1: The base parameters for packet traffic

i = 1 i = 2 i = 3

(gold class) (silver class) (bronze class)

λi 10 15 20
(packets/s)

L̄i (bits) 3360 3360 3360

4.1 The first set of simulations

In the first set of simulations, the parameters related
to three linear pricing functions used are summarized
as follows: b1 = 200, k1 = 10000, for gold class,
b2 = 150, k2 = 5000, for silver class, and b3 = 80,
k3 = 2000, for bronze class (note that the time unit is
second here).

First we investigate the evolution of the revenue
along with the time under our optimal weights and
the proportional weights. In this case, the base arrival
rates in Table 1 are used and one set of given weights
(w1 = 0.60, w2 = 0.25, w3 = 0.15) is also used
for comparison with our approach. Fig. 5 presents
the simulation results, where the x-axis represents the
time (the measurement period is 100 seconds here)
and the y-axis represents the revenue obtained during
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Figure 5: Revenue comparison as function of time, for the
case, load factor ρ = 1 and b1 = 200, k1=10000, b2 = 150,
k2 = 5000, b3 = 80, k3 = 2000.

that measurement period. Unless stated otherwise, we
shall hereafter refer to the latter as revenue. It is ob-
served that the largest revenue is achieved under our
optimal weights compared with those achieved un-
der the proportional and given weights and it is quite
close to the analytic value of maximum revenue by
Eq. (15). Since the parameters used in Eq. (15) are
constant in this case, the analytic value remains con-
stant; whereas, for the mean delay of packets by simu-
lations is variable, the simulated revenue varies along
with the time. Fig. 5 shows that the revenue obtained
under our optimal weights is very close to the ana-
lytic value, which demonstrates the effectiveness of
our approach for revenue maximization.

Next we examine the performance of our revenue-
maximizing approach for the case that the same pric-
ing functions are used and different traffic intensi-
ties are fed into the packet scheduler. Fig. 6 shows
the simulation results, where the x-axis represents the
load factor and the y-axis represents the revenue.

First focusing on our revenue-maximizing ap-
proach, we can see that the revenues obtained under
our optimal weights are extremely close to those of
analytic forms for light and medium loads, and both
decrease along with the load factor. This is as ex-
pected because the increase of the traffic load fed into
the scheduler incurs the increase of the mean delay
and thus the decrease of the obtained revenue. At
heavier loads both curves start to level off sharper
as the penalties start to grow faster. Compared with
our approach, the proportional assignment scheme
achieves less revenues at all traffic loads. And it de-
creases even sharper for heavier load as the penal-
ties incurred under the proportional weights are much
larger than the ones under our optimal weights for the
same load and grow faster.
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Figure 6: Revenue comparison as function of load factor ρ,
for the case, b1 = 200, k1=10000, b2 = 150, k2 = 5000,
b3 = 80, k3 = 2000.

4.2 The second set of simulations

In the second set of simulations, the same simulations
are made for three different linear pricing functions:
b1 = 200, k1 = 5000, for gold class, b2 = 120, k2 =
2000, for silver class, and b3 = 40, k3 = 500, for
bronze class, to evaluate the performance robustness
of our approach for revenue maximization. Figs. 7
and 8 present the simulation results.

It is observed in Fig. 7 that the revenue obtained
under our optimal weights is the largest and it is also
close to the analytic value by Eq. (15). Since the slope
ki of class i in this case is less than the one in the first
set of simulations, the revenue obtained from class i
will decrease more slowly along with the increase of
mean delay in this case, leading to the revenue curves
in Fig. 8 level off smoother for the same load com-
pared with the ones in Fig. 6. Similarly, the largest
revenue is obtained under our optimal weights for all
traffic loads and it is very close to the curve of analytic
maximum revenue. Therefore, it is demonstrated that
our revenue-maximizing approach is effective for any
linear pricing functions.

5 CONCLUSIONS

In this paper, we explored the problem of max-
imizing revenues under multi-class Service-Level-
Agreements. In particular, we considered the opti-
mization problem of maximizing the revenue attained
in a network node under linear pricing scenario. A
revenue-aware scheduling approach was introduced,
which has the closed-form solution to the optimal
weights for revenue maximization derived from rev-
enue target function by Lagrangian optimization ap-
proach. The simulations demonstrated the revenue
maximization ability of our approach.
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Figure 7: Revenue comparison as function of time, for the
case, load factor ρ = 1 and b1 = 200, k1=5000, b2 = 120,
k2 = 2000, b3 = 40, k3 = 500.
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Figure 8: Revenue comparison as function of load factor ρ,
for the case, b1 = 200, k1=5000, b2 = 120, k2 = 2000,
b3 = 40, k3 = 500.

In the future work, the issue of revenue maximiza-
tion for flat pricing scenario is investigated. More-
over, revenue criterion may be used as an admission
control mechanism. In admission control, the packet
is accepted/rejected by hypothesis test, where revenue
increase/decrease is estimated, when a packet comes.
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