
A RUN TIME ENVIRONMENT EXTENSION FOR
PERSONALIZED WEB SERVICES

Julia Gross, Joachim Zeiss, Sandford Bessler
FTW (Telecommunications Research Centre Vienna), Donau-City-Str. 1, Vienna 1220, Austria

Keywords: Web services, web services platform, OSA, Parlay X, profiling, UML design

Abstract: This paper considers the web service environment for Telco applications, as defined recently by the Parlay-
X Working Group within the Parlay organisation. These services include messaging, location, payment, call
control, presence, group management, etc. and open the way to rapid service creation and integration with
internet applications. However, some vital issues for the telecommunications industry such as the secure
user access to a service and its personalization have not been addressed yet sufficiently. The Web Services
Run Time Environment Extension (WSRTE) presented in this paper is a light, vendor-independent frame-
work that facilitates the creation of personalized web services by combining security and profiling func-
tions.

1 INTRODUCTION

Nowadays web services start to find a use in all con-
ceivable branches of industry for whose operation
distributed computing is vital. It is especially true for
the telecommunications field where web services
technology is currently getting adopted and telecom
web services are being created. However, the web
services technology is not yet completely mature and
some aspects, vital for telecom services creation,
have not been addressed yet sufficiently. Specifi-
cally, we consider the secure user access to a service
and its personalization, two crucial requirements. To
our knowledge, the interaction of security and profil-
ing functions has not been so far treated in the litera-
ture. Often, access data and user profiling data are
kept separated in different storages/databases. This
is due to structural diversity of the security mecha-
nisms and proprietary nature of organizing user data.
We show that the user credentials obtained from the
authentication process are used for user profile
lookup, leading to a flexible model that relieves a
system from ambiguity and necessity of user creden-
tials mapping.

The proposed web services runtime environment
extension (WSRTE) should rely on the security
standards supported by the web services platform
(for example WS-Security (OASIS Standard
200401, 2004)), and thereby service providers and
users are not forced to using a certain security
mechanism, since many web services platforms pro-

vide multitude of diverse security mechanisms and
allow plugging proprietary ones (see Manes 2003,
O’Neill 2003, IBM Corp., Microsoft Corp., 2002,
PC Magazine, 2002 for security mechanisms over-
view).

Telecom providers have to offer personalized
services in which the user related data is stored by
the service and precisely customizes it. It is hard to
overestimate the value of personalized services in
the telecom branch. However, there is yet another
type of data necessary for the service operation.
Web services, just as any other kind of distributed
systems, rely on various configuration and startup
data for communication with the software infrastruc-
ture they are a part of (Alonso, G., et al., 2004). Di-
verse system and services addresses, names, proper-
ties, etc. are needed for that purpose. All this infor-
mation should be managed centrally in a system
profile (Newcomer, E., 2004).

The idea of a profiling database is not new and is
further developed in 3GPP under Generic User Pro-
file (GUP) (3GPP TS 23.240, 2003). In fact the ma-
jority of providers already possesses user and service
databases and expects to use them when deploying
new (web) services. A goal in our design is there-
fore to keep the web services platform independent
of the profile database. The result of our work is
generic enough to port it from one web services plat-
form to another without having to change a single
line of the web service code.

251
Gross J., Zeiss J. and Bessler S. (2004).
A RUN TIME ENVIRONMENT EXTENSION FOR PERSONALIZED WEB SERVICES.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 251-256
DOI: 10.5220/0001383902510256
Copyright c© SciTePress

Other than in the IT world, the most important
Services in the Telecom have been standardized in
form of Web Services APIs by the Parlay Group
under the name Parlay-X. These are open interfaces
between network operators and service providers
specified in UML or WSDL (Parlay X Working
Group, 2003) and used for call control, messaging,
content based charging, location, presence, etc. An
open issue is currently the so called WS Framework,
an entity that mediates between the web service pro-
vider and a web service. The solution, we present in
the next sections, implements those parts of the WS
Framework dealing with authentication, access (au-
thorization) and service personalization.

The rest of the paper is organized as follows:
section 2 presents the architecture and design of a
generic web service personalization solution. After a
telecom specific example in section 3, we conclude
and give further research directions.

2 SYSTEM ARCHITECTURE AND
DESIGN

2.1 High level overview

As mentioned above, the WSRTE is a light frame-
work with extensible architecture that can be
plugged into a web services platform. WSRTE
mainly enables web services profiling taking advan-
tage of a security framework provided by a web ser-
vices platform. Thus, WSRTE can be seen as an
abstraction layer between a web service and a given
web services platform implementation that enables
the retrieval of profile data necessary for the web
service operation.

The birds view shows a 3-tier architecture tai-
lored to the needs of web services which require
profiling and security features. The client can be any
application capable of talking SOAP

In Telecom environments we see a number of
platforms for services using, for example, CORBA
technology (ETSI ES 202 915-3, 2003). If we want
to build new Web Services on top of these legacy
systems, we come out necessarily to a similar archi-
tecture to that depicted in Figure 1.

The client sends a SOAP request to a given ser-
vice URL. In our case, a web services platform is
listening to requests for this URL. The request is
intercepted by the WSRTE that extracts and ab-
stracts relevant context information for the web ser-
vice. After interception, the request reaches the web
service implementation. At this point the implemen-
tation accesses the WSRTE to obtain the context
data related to the requesting user, the service itself

or the system/software infrastructure. The runtime

environment interacts with a database and returns
this information to the requesting service via ab-
stracted profiles. For that purpose, the WSRTE ob-
jects mediate between the web services platform and
database implementation (SQL database, for exam-
ple).

Figure 1: Architecture Overview.

The novelty of the presented architecture is in
the fact that WSRTE is vendor independent, i.e. can
be ported to any web services platform that allows
plugging modules for additional SOAP message
processing (most of the current products do) and
supports Java. In our case we plugged WSRTE into
the WASP platform from Systinet (Systinet Corp.,
2004).

WSRTE is web service transparent in sense that
once the web service code has been written there
will be no further changes to it when porting the web
service to another web services platform implemen-
tation.

Another feature of WSRTE architecture is that it
is profiling database independent, i.e. any profiling
database structure can be used with WSRTE, includ-
ing flat files, etc.

All of these issues will be explained in greater
detail later in this chapter.

2.2 Design of Runtime environment
extension

To enable the WSRTE flexibility and vendor inde-
pendence, the entities have been grouped in three
categories (see Fig. 2):
1. Classes and interfaces provided by web services

platform (e.g. WASP) being used by WSRTE
and enabling plug-in functionality (packages
org.systinet.wasp.webservice and org.idoox on
Fig. 2

2. Classes implemented by WSRTE to fulfil web
services platform specific tasks (package
at.ftw.wasp on Fig.2)

3. Classes and interfaces implemented by WSRTE
that are platform independent. A web service

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

252

implementation is interacting with these classes
and interfaces only to guarantee product inde-
pendent realization of a web service (package
at.ftw.profiling on Fig. 2)

WSRTE is plugged in WASP by means of a
HeaderProcessorImpl class implementing
WASP HeaderProcessor interface that serves
message interception purposes. The WASP server
offers the opportunity to define header processors
for each deployed service. These header processors
are being called on every request to the related ser-
vice ahead of calling the service implementation but
after security framework did its job.

As initial access point to the WSRTE, a web ser-
vice implementation creates an object of Con-
textFactory type. This class is simply wrapping
the actual platform dependent implementation of a
ContextFactory. In addition to the Con-
textFactoryOperations implementation, it
provides the method bindFactoryImpl which is
called by the WaspContextFactory at creation
time. This allows different factory implementations
to be loaded at program runtime. The web service
implementation will not notice if it is using a WASP

related, AXIS related or any other specific imple-
mentation of a ContextFactory. Due to this
mechanism the web services platform specifics re-
main hidden to a web service implementation.

The WaspContextFactory is created at
WASP start up and has the task to provide actual
implementations of identity and profile query ob-
jects to the web service implementation. As the web
service sees these objects via WSRTE Identity-
Query and ProfileQuery interfaces, it is un-
aware of the actual profiling database structure and
doesn't have to perform any security framework spe-
cific actions to obtain the user’s credentials. These
operations are performed by ProfileQueryImpl
and WaspIdentityQueryImpl respectively.

With such a design we achieve WSRTE portabil-
ity and ability to use any profiling database:

Figure 2: UML Class Diagram.

• to port WSRTE to another web services plat-
form, only the classes from the second category
in the list above have to be replaced by classes
meeting the new platform requirements. Since
the separation between actual implementation
and presentation to a web service is kept clean,

A RUN TIME ENVIRONMENT EXTENSION FOR PERSONALIZED WEB SERVICES

253

the web service implementation will not be af-
fected by such a change.

• to use another database structure, only a new
ProfileQueryImpl class implementing
ProfileQuery interface needs to be written.
This action will not influence the web service
code.

2.3 Processing a SOAP request

The sequence diagram under Fig. 3 shows the typi-
cal interaction of a web client with a web service. It
gives details on request processing and interactions
between the platform (in our case WASP), the
WSRTE and the web service implementation.
1. Deployment: On deploying the service onto the

WASP platform, a new HeaderProces-
sorImpl object is created and associated to
the web service. If the web service is required to
be preloaded, WASP creates an instance of its
implementation class. The web services con-
structor will typically create a ContextFac-
tory and obtain a ProfileQuery object to
retrieve system and service profiles.

2. Processing incoming request: The WASP
server performs security tasks. If not preloaded,
the web service implementation is at this time
instantiated as described above. The WASP
server creates a Current and a CallCon-
text object for this single request. After that,
the HeaderProcessor is being called. It
gets the user credentials from the Current object
and stores them in the CallContext object as
userID and domain ID.

Figure 3: Sequence Diagram.

Client Wasp Server

ftwProcessor:
HeaderProcessorImpl

thisRequest:
Current

thisRequest:
Cal lContext

AnyWebService

ContextFactory

profi leQ:
Profi leQuery

identi tyQ:
Identi tyQuery

deploy: new()

create instance of deploy ed web serv ice: new()

create factory for th is
WS instance: new()

create static
member: new()get profi le DB proxy:

default action

retrieve system setup: getSystemProperties(setupName)

retrieve service properties: getServiceProperties(serviceNam e)invoke WS:SOAP
Request

create instance for requested
thread: new()

create instance for request thread new()

WS speci fic processing:
ProcessInput

getIDs:
getReceivedCredentials

add domainID & userID: put(credentials)

cal l method addressed by SOAP request: doRequestedWork()

get ID proxy: getIdenti tyQuery()
new()

obtain domainID & userID: credentials: = get()

get domainID for profi le query: dom ainID:= getDomainID()

get userID for profi le query. userID:= getUserID()

get profile DB proxy: getProfi leQuery()

retrieve user profi le: userProps:= getUserProperties(domainID, userID)

WS invoke: SOAP
response

request thread goes away: destroy()

request thread goes away: destroy()

3. Web Service invocation: After invoking the
header processor, the WASP server invokes the
requested method on the web service implemen-
tation. Inside this method call, the web service
obtains an IdentityQuery object using the
ContextFactory. The ContextFactory
implementation will in turn create an Identi-
tyQuery object for each call of getIdentity-
Query. This is required, as the CallContext
object accessed by the IdentityQuery only
exists while processing this single request.
Therefore, on creation of the Identity-
Query object, it asks the CallContext ob-
ject for user ID and Domain ID. Those two IDs

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

254

have been set on IdentityQuery by the
HeaderProcessor implementation and are
delivered when the web service calls getUserID
or getDomainID on it. The web service obtains
the user profile by calling getUserProperties on
the ProfileQuery object. The web service
implementation may now proceed with the
processing of the request.

4. Response sending: The result of the method
call on the web service implementation is
packed into a SOAP response by the web ser-
vice and sent back to the client. CallContext
and Current objects are destroyed. Note that
callback and network event support is left to the
application servers capabilities. It might be con-
ceivable, however, to integrate this functionality
into the WSRTE to support dynamic reconfigu-
ration or work flow mechanisms.

2.4 Profile Management

This section discusses design topics related to profile
management as such, in particular the representation
of profile data in a relational database.

In Figure 4 we show the entity relationship dia-
gram of our profiling database. The structure intro-
duced here is not only useful for the WSRTE but
also a generic solution for storing profiles of any
kind. As the profile query mechanism design uses
the proxy pattern, any existing database structure,
flat files, etc. could be chosen to implement data
storage.

We distinguish between four different profile
types:
• System profiles contain information related to

the server on which the application is running.
The information is common to all services and
users, for example the class path, execution
path.

• Service profiles contain information relevant to
a particular service, for example a JDBC URL
or service IDs. This data is common to all users
using this service.

• User profiles describe information belonging to
the user and independent of the service. A
phone number or an e-mail address could go
here. It is information of a particular user com-
mon to all services the user is requesting.

• Service-user profiles are related to a particular
service and a particular user. The range of tele-
phone numbers to which the user is allowed to
dial out using a 3rd party call service is an ex-
ample for that.

Those four categories are represented by corre-
sponding tables (see Figure 4). They all inherit from
table PropertyOwner that contains the owner de-
scription and provides the unique property owner
ID. Finally, table Property contains the actual profile
attributes.

To access the profile system, a user and profile
administration client has been developed.

PropertyProperty

Service Service profileprofile System System profileprofile ServiceService--User User profileprofile User User profileprofile

Name

Value

DomainIDUserID

Property OwnerProperty Owner

1 n

n1

1

n

Ownerdescription

Figure 4: Profile System: Entity Relationship diagram.

3 A TELECOM 3RD PARTY CALL
SERVICE EXAMPLE

In this section we show a telecom application using
a Parlay X (Parlay X Working Group, 2003) service
implemented with the WSRTE extensions, taking
advantage of service security and personalization
support. Parlay-X services specifications are sets of
APIs, standardized by the Parlay Group. They have
a high level abstraction and map to low level Parlay
APIs such as messaging, mobility, call control or
charging. Parlay X services are supposed to be se-
cure and customisable. While fulfilling these re-
quirements we still treat a Parlay X service as being
nothing else but a web service. This means that all
tasks related to security and profiling, former treated
by a Parlay Framework (F/W) (ETSI ES 202 915-3,
2003), will now be offered by the web services plat-
form together with our runtime environment. The
advantage of this model is that those tasks are per-
formed basing on a combination of existing WS
standards. In Figure 5, a number of different SOAP
clients are able to access the Parlay X service im-
plementation (Systinet Corp., 2004, Apache Soft-
ware Foundation, 2004). When implementing Parlay
X services, extensive support for CORBA and client
side implementation towards a Parlay framework
and Parlay is required. The web service implementa-
tion are kept separate from the tasks that require
CORBA interactions, thus the web service itself is
deployed in a web services platform, whereas the
CORBA related tasks are implemented as CORBA

A RUN TIME ENVIRONMENT EXTENSION FOR PERSONALIZED WEB SERVICES

255

components and reside in their own container
(CORBA components, CCM). The web service im-
plementation delegates CORBA related tasks to a
proxy component which authenticates the service at
the Parlay Framework and mediates between the
web service and the basic CORBA service (call
setup in this case). In addition, the proxy object can
handle connections to different Frameworks inside
or outside the web services domain.

 The Click2Call (C2C) application uses the so-
called 3rd Parlay X 3rd Party Call Service and takes
advantage of the proposed profiling system.

The Click2Call application could be incorpo-
rated into a real-estate purchase/rent web site. The
end user browses the site, views photos and reads
description of some houses and if he is interested he
pushes the button to activate the C2C application
and connect to an estate broker for discussing further
details.

The service subscription process is expected to
be done offline and is not discussed here. At service
subscription, the user is assigned a service and user
profiles by the WSRTE administration tool. Follow-
ing a request, the service access rights are checked
by the web services platform. Which security
mechanism should be applied for the client-service
communication is a part of the service contract.

The user logs in from the welcome page. For a
call we need two addresses – of the caller and the
callee. In our case, the own address is stored in the
User Profile and is looked up by the service with the
help of WSRTE after the authentication process.
Moreover, the service can perform an authorization
check for the called user by looking up the Service-
User Profile for this user, and for example, deny
international calls in the PSTN. The System Profile
in this example contains the address of the Naming
Service which leads to the address of the underlying
FW Proxy component. Therefore, one could move
the underlying network level service infrastructure,
modify an entry in System Profile for the Parlay X
3rd Party Call Service and continue using the latter
without having to restart the web services platform
or re-deploy the Parlay X service.

4 CONCLUSIONS AND FURTHER
RESEARCH

We have shown in this work how one can extend an
existing web service platform to support profiling
for users and services. We discussed as well archi-
tectural considerations for embedding the web ser-
vice layer in a telecom service infrastructure.

When working with the prototype, we found out
that parts of the profiles (System Profiles) are used
simply to find and access other services. In the fu-
ture, service discovery, service inter-working (ag-
gregation, orchestration) and reconfiguration is go-
ing to play a major role and should be done dynami-
cally. One way to do it, is to perform the interaction
between web services via connection proxies, which
would be dynamically configured by a connection
manager. Connection reconfiguration and service
discovery would be transparent to the web service.

REFERENCES

Alonso, G., et al., 2004. Web Services. Concepts, Architec-
tures and Applications. Springer-Verlag Berlin Hei-
delberg.

Apache Software Foundation, 2004. Apache web services
project Axis, http://ws.apache.org/axis/index.html

ETSI ES 202 915-3, 2003. Parlay/OSA Framework API,
http://www.parlay.org

IBM Corp., Microsoft Corp., 2002. Security in a Web
Services World: A proposed Architecture and Road-
map, http://www-
106.ibm.com/developerworks/webservices/library/ws-
secmap/

Manes, A., T., 2003. Web Services. A Manager’s guide.
Addison-Wesley

Newcomer, E., 2004. Context, Coordinators, and Transac-
tions – The Importance of WS-CAF,
http://www.webservices.org/index.php/article/view/12
97/

OASIS Standard 200401, 2004. Web Services Security;
SOAP Message Security 1.0, http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0

O’Neill, M., et al., 2003. Web Services Security. McGraw-
Hill/Osborne

Parlay X Working Group, 2003. Parlay-X Web Services
Specification, http://www.parlay.org/specs/index.asp

PC Magazine, October 2002. Securing Web Services,
Systinet Corp., 2004. WASP Server for Java,

http://www.systinet.com/doc/wasp_jserver/
3GPP TS 23.240, 2003. Generic User Profile (GUP) re-

quirements; Architecture.

Figure 5: Telecom service collaboration diagram.

F/W

F/W

Client Users Middleware Parlay Gateway

WebService:

P/X
3rd party

call

SCS

other…
Generic

Call
Control
ServiceCCM

F/W
proxy

call
setup

WASP

CORBA
Name service

UDDITomcat/AXIS

click2call.jsp

.NET
click2call.exe

click2call.aspx

WASP client

com-
ponents

click2call.jar

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

256

