
NEW METHOD FOR STRUCTURAL CHANGE DETECTION OF 
TIME SERIES AS AN OPTIMAL STOPPING PROBLEM 

 

Hiromichi  Kawano, Ken  Nishimatsu 
NTT Service Integration Laboratories, Musashino-shi, Tokyo, 180-8585 Japan 

 

Tetsuo  Hattori 
School of Enginieering, Kagawa University, Takamatsu City, Kagawa, 761-0396 Japan 

Keywords: Time series, Structural change, Dynamic Programming, Optimal stopping problem 

Abstract: In general, an appropriate prediction expression and/or model is constructed to fit a time series though, the 
model begins to unfit (or not to fit) the time series from some time point, especially in the field that relates 
to human activity and social phenomenon. In such case, it will be important not only to quickly detect the 
unfitting situation but also to rebuild the prediction model after the detection as soon as possible. In this 
paper, we formulate the structural change detection problem in time series as an optimal stopping problem, 
using the concept of DP (Dynamic Programming) with a cost function that is the sum of unfitting (or not 
fitting) loss and action cost to be taken after detection. And we propose a method for optimal solution and 
show the correctness by proving a theorem. Also we clarify the effectiveness by showing the numerical 
experimentation. 

1 INTRODUCTION 

Change point detection (CPD) problem in time series 
is to find that a structure of generating data has 
changed at some time point by some cause. We 
consider that the problem is very important and that 
it can be applied to a wide range of application 
fields.  
For example, degradation detection in 
communication system (R.Jana and S.Dey, 2000), 
object detection on a radar screen ( R.M.Gagliardi 
and I.S.Reed, 1965), speech processing (R.J.Di 
Francesco, 1990), and fault detection (A.S.Willsky, 
1996), (D.Kauame, et al., 1996) are such application 
examples of the CPD problem.   

The processing method for the CPD problem is 
roughly divided into two types: one is batch 
processing that checks all generated data in the past 
and another is sequential processing that checks if 
the structure has changed or not at every new data 
generation.  

As the former representative method, Chow test 
is well known and is often used in econometrics 

(Chow,G.C., 1960). It does a statistical test by 
setting the hypothesis that the change has occurred at 
time t.  However, the problem of Chow test exits in 
that we have to give the change time t for the 
hypothesis setting, and also in that the test lacks the 
rapidity to detect the change point. 

As the latter representative method, there are 
Bayes’ method (S.MacDougall, A.K.Nandi and 
R.Chapman, 1998), (V.V.Veeravalli and 
A.G.Tartakovsky, 2002) and CUSUM one 
(E.S.Page, 1954), (C.Han, P.k.Willet and 
D.A.Abraham, 1999), (S.D.Blostein, 1991), (Y.Liu 
and S.D.Blostein, 1994), (M.Basseville and 
I.V.Nikiforov, 1993), (M.Basseville, 1988), based on 
sequential probability ratio test. The Bayes’ method 
can detect the change point, based on the sequential 
estimation of posterior probability, if the generation 
distribution of time series data is known at the time 
before and after the change point. So the Bayes’ 
method can solve the problem in the Chow test, but 
it requires that the generation distribution for the 
time series data is already known. 
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Moreover, in practical situation, we have to 
consider not only that a loss cost is involved with 
prediction error but also that an action to be taken 
after the change detection will need a cost. 
Conversely, the CPD is necessary in order to judge 
when to take the action. 

Taking the field of network management for 
example, time series data (e.g. error rate and delay) 
of the quality are always monitored, and when the 
structural change is detected, some action for the 
quality improvement is taken.   

In the structural change detection under such 
situations, we must consider the trade-off between 
loss by the degradation and cost for the quality 
reformation. 

However, as far as the authors can know, no 
such conventional CPD method considering the 
action cost has been proposed, in spite of the fact 
that such method is very useful at practical level. 

In this paper, in order to solve difficulties in 
conventional methods for structural change detection 
in time series, we propose a new and practical 
method based on an evaluation function of loss cost. 
And we formulate the CPD problem as an optimal 
stopping problem using the concept of DP (Dynamic 
Programming) and give the optimum solution in the 
formulation. We consider that our method is 
effective in the sense as follows.   
1. Differently from the Chow test, it does not need to 

set the change point in a priori.  
2. Unlike the Bayes’ method, it does not need to give 

the generation distribution of time series data. 
3. It can quickly detect the structural change point by 

the sequential processing.  
4. It minimizes the evaluation function that sums up 

the loss involved with prediction error and action 
cost to be taken after the change detection. 

5. It is a meta-level method so that we can apply it to 
any prediction model in the evaluation function. 

Also in this paper, we present the correctness of our 
solution by proving a theorem and show the 
effectiveness by numerical experimentation results. 

2 FORMULATION 

2.1 Evaluation Function 

We formulate the CPD problem as an optimal 
stopping one based on an evaluation function that 
sums up the cost   involved by prediction error and 
action cost to be taken after the change detection. 
For example, a prediction expression is given in the 
following equation as a function of time t, where yt, 

β1, β0, ε mean the function value, two constant 
coefficients, and error term, respectively.  

ε+β+⋅β= 01 tyt                                           (1)  
The error term ε is given as a random variable of the 
normal distribution of variance σ and average of 0, 
i.e., ε～N(0, σ).   

A time series data based on the Equation (1) is 
shown in Figure 1, that is generated by making 
normal random numbers of average 0 and variance 1 
for ε, and by setting β1=0.2, β0=1 for the time 
t=1,2,…,70, and β1=0.8, β0=－41  for the time after 
t=71. 
The tolerant error interval or tolerance zone between 
two broken lines as shown in Figure 1 is decided 
using the first time series data from t=1 to t=20.  

Using those data, the prediction expression is 
made by the least squares method, and the tolerant 
interval of error is calculated as 95% confidence 
interval of the sample variance of residual ε.   

Note that the tolerant error interval is not based 
on the confidence interval of regression formula 
given in the following Equation (2), but is defined 
based on the distribution of error term ε of Equation 
(1)(N.R.Draper, H.Smith, 1996).   
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Figure 1: Example of time series data.  
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In Figure 1, it can be read that the generated 
data runs out frequently from the tolerance zone 
since after t=70.  From the fact, when the difference 
(or observation error) between the observed data and 
forecasted value exceeds a specified tolerance (i.e., 
when the observed data goes out from the tolerance 
zone), we can think that that there is a high 
possibility that the structural change has occurred.  

For simplicity, we think two situations; one is 
the situation that the observed data is out from the 
tolerance zone, and another the situation that the 
observed data is in the zone. Then we call the former 
situation “unfitting” and the latter “fitting”. Based on 
this discussion, we consider that the structure has 
changed, when the unfitting occurs between 
sequentially observed data and forecasted value by 
continuing N times. This specified tolerance is 
defined as, e.g., 2σ of the distribution on error ε that 
is estimated at the time when the prediction 
expression is made. 

The evaluation function is given in (3) as the 
sum of two kinds of cost: the damage caused by the 
unfitting (i.e., unfitting loss) and action cost to be 
taken after the change detection.   
 

Total_cost=cost (A)+cost(n)                          (3) 
where cost(n) is the sum of the loss by continuing n 
times unfitting before the structural change 
detection, and cost(A) is the cost involved by the 
action after the change detection.   

Taking the quality control problem for example, 
the above cost(n) means the loss caused by the 
quality degradation and superfluous quality. And the 
cost(A) means the cost involved by some facility 
replacement.  

Since the observed time series data is a random 
variable and the unfitting event is stochastic, the 
value of the evaluation function Total_cost also 
becomes a random variable. Then we have to find 
the number of times N that minimizes the 
expectation value of Total_cost, under the 
assumption that the structural change occurs 
randomly. Note that the evaluation function can be 
defined if only the distribution of error ε is given, so 
there is no need for the prediction expression to be 
such a form like equation (1). 

2.2 Structural Change Model 

We assume that the structural change is Poisson 
occurrence of averageλ , and that, once the change 
has occurred during the observing period, the   
structure does not go back to the previous one. The 
reason why we set such a model is that we focus on 
the detection of the first structural change in the 
sequential processing (or sequential test). The 

concept of the structural change model is shown in 
Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Structural change model 
 
Moreover, we introduce a more detailed model. 

Let R be the probability of the unfitting when the 
structure is unchanged. Let Rc be the probability of 
the unfitting when the structure change occurred. We 
can consider that Rc is greater than R, i.e., Rc>R.  

The detailed internal model for the State Ec and 
E are illustrated as similar probabilistic finite state 
automatons in Figure 3 and 4, respectively. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
Figure 3: Internal model of the State E. 

 
 

 
Figure 4: Internal model of the State EC. 
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Ec :  State that the structural change occurred. 
E   :  State that the structure is unchanged. 
λ   :  Probability of the structural change 
         occurrence.       (Poisson Process.)        
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2.3 Evaluation Function Using DP 

Let the cost(n) be a・n  as a linear function for n, 
where  a is the loss caused by the unfitting in one 
time. And for simplicity, let C and A denote the 
Total_cost and cost(A), respectively. Then, the 
evaluation function in (3) is denoted as the following 
equation (4).  

 
naAC ⋅+=                                  (4) 

Using the concept of the DP (Dynamic 
Programming), we introduce a function to 
obtain the optimum number of times n that 
minimizes the expectation value of the evaluation 
function of Equation (4). 

),( NnEC

Let N be the optimum number. Let the function 
 be the expectation value of the evaluation 

function at the time when the unfitting has occurred 
),( NnEC

in continuing n times, where n is less than or equal to 
N, i.e., 0≦ n≦ N. Then the function  is 
recursively defined as in the following equation. 

),( NnEC

 
(if n=N ) NaANNEC ・+=),(                      (5) 

(if n<N ) naSSPNnEC nn ・・)|(),( 1+=   

),1())|(1( 1 NnECSSP nn +−+ +     (6)  
where Sn is the state of unfitting in continuing n 
times, 1+nS  is the state of fitting for the (n+1)-th 
time observed data, and )|( 1 nn SSP + is the 
conditional probability that the state 1+nS occurs 
after the state n

The first term in the right-hand side (RHS) of 
Equation (6) indicates the expectation value of the 
evaluation function at the time when the fitting 
happens for the (n+1)-th time observed data after the 
unfitting occurred for continuing n times.   

S   occurred. 

The second term in the RHS of Equation (6) 
indicates the expectation value of the evaluation 
function at the time when the unfitting happens for 
the (n+1)-th time observed data after the unfitting 
occurred for continuing n times. 

Note that, from the definition of the function 
, the N that minimizes EC(0,N) is the same 

as n  that minimizes the expectation value of the 
evaluation function of (4).   

),( NnEC

2.4 Minimization 

For the aforementioned EC(0,N), the following 
theorem holds, and gives the n that minimizes the 
expectation value of the evaluation function of (4).  

Theorem.   
The N that minimizes EC(0,N) is given as the largest 
number  n that satisfies the following Inequality (7). 

)|()( 1−+< nn SSPaAa ・                              (7) 
where the number N+1 can also be the optimum one 
that minimizes EC(0,N), i.e.,  EC(0,N) = EC(0,N+1) 
, only if  )|()( 1 NN SSPaAa ++= ・ . 

Proof  (Outline). 
Since the strict detailed proof needs many pages, we 
present the outline of the proof for the Theorem.  

In order to prove this Theorem, we derive a 
contradiction with two assumptions under a premise 
as follows. 

Premise: a number N ′  is the largest number n 
that satisfies the Inequality (7). 

Assumption 1:  There exists a number N ′′  
such that  '" NN < and  )',0()",0( NECNEC <

Assumption 2:  There exists a number N ′′  
such that  "' NN < and  ),0(),0( NECNEC ′′>′ .  

We can derive the above contradiction by three 
steps, as described below. At Step 1, we prove the 
following fundamental lemmas: Lemma 1-1 and 
Lemma 1-2.  At Step 2, two lemmas, Lemma 2-1, 
and Lemma 2-2, are proved. 

Using those lemmas, we can show that the 
above Assumption 1 contradicts the Premise. 
Similarly, at Step 3, it is proved that the Assumption 
2 contradicts the Premise, using two lemmas: 
Lemma 3-1 and Lemma 3-2. 

 
(A) Lemmas in Step1 

Lemma 1-1:  
Let be the event that the structural change 
occurs once during the period of observation in 
continuing n times. Let   be the 
conditional probability that the  occurs under 
the condition that failing occurs in continuing n 
times. Then,  is an increase function 
for n.  

cnE

)|( ncn SEP
cnE

)|( ncn SEP

Lemma 1-2: 
The conditional probability )|( 1 nn SSP +  is a 
decrease function for n.   

Those Lemmas are strictly proved subsequently 
in the Appendix.  
 
(B) Lemmas in Step2 

Lemma 2-1: 
 If '" NN < , then  ),(),( NNECNNEC ′′′′<′′′ . 
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Lemma 2-2:  
If  , then, for m ( ), '" NN < Nm ′′≤<0

),(),( NmNECNmNEC ′′−′′<′−′′            
By putting Nm ′′= in the Lemma 2-2, we 

have  in case of ),0(),0( NECNEC ′′<′ '" NN < .                                          
This inequality contradicts the Assumption 1:  There 
exists a number  such that  and 

. 
"N '" NN <

)',0()",0( NECNEC <
 

(C) Lemmas in Step3 
Lemma 3-1: 

 If , then  "' NN < )','()",'( NNECNNEC ≥
where the equality holds only if  and  1'" += NN

)|()( '1' NN SSPaAa ++= ・  
Lemma 3-2: 

 If , then, for  ( ), "' NN < m '0 Nm ≤<
),(),( NmNECNmNEC ′−′≥′′−′             ,               

where the equality holds only if  and   1'" += NN
)|()( '1' NN SSPaAa ++= ・ . 

By putting in the Lemma 3-2, we have 
 in case of 

'Nm =
)',0()",0( NECNEC ≥ NN ′′<′ . 

This contradicts the Assumption 2: There exists a 
number  such that N ′′ "' NN < and 

. ),0(),0( NECNEC ′′>′

After all, ),0(),0( NECNEC ′′≤′  ( '" NN <  or 
), where the equality holds only if 

 and 

NN ′′<′

1'" += NN )|()( '' NN SSPaAa 1++= ・ .  
It means that minimizes . And, when N ′ ),0( NEC

)|()( '1' NN SSPaAa ++= ・ ,  also minimizes 
, i.e., 

1'+N
),0( NEC )1',0(),0( +=′ NECNEC . 

This completes the proof of the aforementioned 
Theorem. 

3 EXPERIMENTATION 

3.1 Feature of Evaluation Function 

We have experimented the proposed method, and 
evaluated the feature of the evaluation function, 
using the probability of the structural change 
occurrence λ  and each constant of the Equation (4), 
i.e. A and a, as parameters.  

First, by numerical computing, we show the 
decreasing situation of the probability )|( 1−nn SSP  
for n in Figure 5. In this case, the probability 
approaches to 0.05 (5 %) by letting n become 
greater. It meets to the aforementioned Lemma 1-2. 
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 5: The probability )|( 1−nn SSP for three kinds of 
currence probability of structural change) in the case 

of Rc=0.95 

hat is, we have examined the relation between 
tio of aAa /)( +  and the optimum number of 
 n (that is the same as aforementioned N), by 
g the probability λ . 

rimental condition: 
ructural change probability λ ：(three types) 
, 0.05, and 0.01. 

aA /)+ ：1.5～10.0. 
olerance of prediction: 2σ of the distribution on 
or ε. 
nfitting probability when the structure is 
hanged: R=0.1. 
fitting probability when the structure has 
nged: Rc=0.9.  

lt: 
esult is shown in Figure 6, where horizontal 
s aAa /)( +  and vertical axis is n. We can see 
e tendency meets our intuition, as follows. 
he optimum number of times n tends to be 

rger when the action cost A after the CPD is 
gger than the unfitting cost . That is, the n 
ows in the case of A > a, because the action 
st A after the change detection becomes 
minant over the loss cost  by prediction 
ror, and the n decreases in the case of A < a 
r the reverse reason. 

a

a



 

(ii) The n for the CPD increases when the 
probability λ of the structural change occurrence 
becomes smaller. 

  

Figure 6: Relation between the ratio and the 
optimum number of times n 

aAa /)( +

3.2 Application to Time Series Data 

Since the tolerant error in the proposed method is 
decided based on the residual sample distribution 
when the prediction expression is estimated, the 
accuracy of CPD depends on the accuracy of 
prediction (or the prediction model). We examine the 
fact using the time series data shown in Figure 1. 

 
Outline of experimentation: 
(i)Generate the time series data (Figure 1) based on 

the Equation (1) as aforementioned in the Section 
2.1, by making normal random numbers of 
average 0 and variance 1.0 for ε, and by setting 
β1=0.2, β0=1 for the time t=1,2,…,70, and β1=0.8, 
β0=－41  for the time after t=71. 

(ii)Make prediction expression, using a sequence of 
data at the time t=1,…,k from the above generated 
time series.  

(iii)Decide the tolerant error interval. 
(iv)Based on the proposed method, measure the  

number of times when the observed data goes out 
from the tolerance zone (or tolerant error interval) 
for observation data after the time at k+1, and 
detect the structural change point. 

(v)Perform the above things repeatedly by M times, 
and calculate the average of the structural change 
point. 

 Experimental condition:   
(i)Tolerant error interval: ± 2σ of the distribution on 

error ε. 
(ii)The number of data for the decision of prediction 

expression: k=20, 40 (2 types). 
(iii)Parameter value of the evaluation function:  

λ =0.01, and aAa /)( +  is changed in a range of  
1.5～10.0.  

(iv)Repeating times: M=100. 
 
Result: 
The result is illustrated in Figure 7, where horizontal 
axis shows aAa /)( +  and vertical axis shows the 
detected change point n that is the average of 100 
times computation.  
Although the detection of the change point depends 
on the value of aAa /)( + , it is expected that the 
change point will be detected around the time at 
t=70, because the structure of the time series is 
changed at t=70. We have verified that the result 
meets our intuition very well as follows. 
 
(A) In case of k=20, because the number of the data 

for the prediction expression is less than the 
case of k=40, the prediction accuracy is 
considered to be so much worse. Therefore, the 
unfitting frequency increases and the change 
point tends to be detected early. 

(B) In case of k=40, the change is detected within 
the time at t=70～80. We consider that the 
proposed method has appropriately detected the 
change point.   

 

Figure 7: Detected change point n for the time series in 
Figure 1 
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4 CONCLUSION 

We have proposed a sequential processing method 
for structural change detection of time series data, 
which we formulated as an optimal stopping 
problem with a cost evaluation function. We have 
presented the algorithm for the optimum solution, 
and have shown the correctness by proving a 
theorem. The proposed method is effective in the 
sense as follows.  
1. Differently from the Chow test, it does not need to 

set the change point in a priori.  
2. Unlike the Bays’ method, it does not need to give 

the generation distribution of time series data. 
3. It can quickly detect the structural change point by 

the sequential processing.  
4. It minimizes the evaluation function that sums up 

the loss involved with prediction error and action 
cost to be taken after the change detection. 

5. It can be applied to any prediction model. 
Moreover, we have shown some numerical 

experimentation results, where the resultant 
situations by obtaining optimum solutions well meet 
our intuition and the change point of artificially 
generated time series data.    

APPENDIX: PROOF OF LEMMA IN 
THE STEP 1 

Lemma 1-1. 
The conditional probability is an 
increase function for n.  

)|( ncn SEP

 
Proof. Based on the model (see Figure 2-4), the 

event  is given in (8). cnE
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where E is the event that there is no structural 
change,  is the event that the structural change 

occurred, and  is defined as . 
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The probability of the event  defined in (8) is 
given as follows.   

cnE

( ) ( )in
c

i
n

i

n

i

in
c

i
cn EEPEEPEP −

−

−

−

=

− ∩=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∩= ∑

1

0

1

0

)( U    

λλ−=∑
−

=

1

0
)1(

n

i

i                                                         (9) 

Then the joint event between and , and 
the probability are given by (10) and (11), 
respectively. 
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According to the Bayes’ theorem, the posterior 
probability  is given by the following 
(13). 
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The D(n) is also expressed as the following (14).   
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where 
cR

R)(1X  λ－= . 

Since , , and , 
then 0 < X < 1. So, the D(n) becomes a monotonous 
decrease for n. Therefore, the probability 

 of (13) is a monotonous increase 
function for n. Lemma 1-1 is proved. 
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Remark: Lemma 1-1 indicates that, if the 

number of times of the unfitting n increases, the 
probability that the structural change has occurred 
increases. This meets our intuition clearly. 
 
Lemma 1-2.   
The conditional probability )|( 1 nn SSP + is a 
decrease function for n.   

 
Proof.  Based on the model in Fig. 3, we have  

))|(1)(1()|( 1 ncnnn SEPRSSP −−=+    

)|()1( ncnc SEPR−+                                   (15) 
The first term in the RHS of (15) shows the 

probability that the fitting occurs for the (n+1)-th 
time observed data when the structure is unchanged.  
The second term shows the probability that the 
fitting occurs for the (n+1)-th time observed data 
when the structure changed.  

From (15), we have 

))(|(1)|( 1 cncnnn RRSEPRSSP −+−=+      (16) 

By Lemma 1-2, is an increase 

function, and , therefore, 

)|( ncn SEP

cRR < )|( 1 nn SSP + is a 
decrease function for n.  Lemma 1-2 is proved. 

 
Remark: Lemma 1-2 indicates that, if the 

number of times of continuous unfitting increases, 
the probability of the fitting for the next observed 
data after those continuous unfitting decreases. This 
is intuitively clear, because, by Lemma 1-1, the 
probability of the structural change increases if the 
number of times of the continuous unfitting 
increases.   
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