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Abstract: The robust control problem for linear systems with parameter uncertainties and time-varying delays is exam-
ined. By using an appropriate uncertainty description, a linear state feedback control law is found ensuring
the closed-loop system’s stability and a performance measure, in terms of the guaranteed cost. An LMI ob-
jective minimization approach allows to determine the ”optimal” choice of free parameters in the uncertainty
description, leading to the minimal guaranteed cost.

1 INTRODUCTION

Model uncertainties and time-delays are frequently
encountered in physical processes and may cause per-
formance degradation and even instability of control
systems (Malek-Zavarei and Jamshidi, 1987), (Mah-
moud, 2000), (Niculescu, 2001). Hence, stability
analysis and robust control problems of uncertain dy-
namic systems with delayed states have been studied
in recent control systems literature; for details and
references see e.g. (Niculescu et al., 1998), (Kol-
manovskii et al., 1999), (Richard, 2003). Since con-
trol input delays are often imposed by process design
demands as in the case of transmission lines in hy-
draulic or electric networks, it is necessary to consider
uncertain systems with both, state and input time-
delays. Moreover, when the delays are imperfectly
known, one has to consider uncertainty on the delay
terms, as well. In recent years, LMIs are used to solve
complex analysis and control problems for uncertain
delay systems (e.g. (Li and de Souza, 1997), (Li et al.,
1998), (Tarbouriech and da Silva Jr., 2000), (Bliman,
2001), (Kim, 2001), and related references).
The purpose of the present paper is to design con-
trol laws for systems with uncertain parameters and
uncertain time-delays affecting the state and the con-
trol input. Although the uncertainties are assumed
to enter linearly in the system description, it is well
known that they may be time-varying and nonlinear
in nature, in most physical systems. Consequently,
the closed-loop system’s stability has to be studied

in the Lyapunov-Krasovskii framework; the notion
of quadratic stability is then extended to the class of
time-delay systems (Barmish, 1985),(Malek-Zavarei
and Jamshidi, 1987). On the other hand, it is desir-
able to ensure some performance measure despite un-
certainty and time-delay, in terms of guaranteed up-
per bounds of the performance index associated with
the dynamic system. The latter specification leads to
the guaranteed cost control (Chang and Peng, 1972),
(Kosmidou and Bertrand, 1987).
In the proposed approach the uncertain parameters af-
fecting the state, input, and delay matrices are allowed
to vary into a pre-specified range. They enter into
the system description in terms of the so-called uncer-
tainty matrices which have a given structure. Differ-
ent unity rank decompositions of the uncertainty ma-
trices are possible, by means of appropriate scaling.
This description is convenient for many physical sys-
tem representations (Barmish, 1994). An LMI opti-
mization solution (Boyd et al., 1994)is then sought in
order to determine the appropriate uncertainty decom-
position; the resulting guaranteed cost control law
ensures the minimal upper bound. The closed-loop
system’s quadratic stability follows as a direct conse-
quence.
The paper is organized as follows: The problem for-
mulation and basic notions are given in Section 2.
Computation of the solution in the LMI framework is
presented in Section 3. Section 4 presents a numerical
example. Finally, conclusions are given in Section 5.
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2 PROBLEM STATEMENT AND
DEFINITIONS

Consider the uncertain time-delay system described
in state-space form,

ẋ(t) = [A1 +∆A1(t)]x(t) +

[A2 +∆A2(t)]x(t− d1(t)) + [B1 +∆B1(t)]u(t)

+[B2 +∆B2(t)]u(t− d2(t)) (1)

for t ∈ [0,∞) and with x(t) = φ(t) for t < 0.

In the above description, x(t) ∈ R
n is the state

vector, u(t) ∈ R
m is the control vector and A1, A2

∈ R
n×n, B1, B2 ∈ R

n×m are constant matrices.

The model uncertainty is introduced in terms
of

∆A1(t) =

k1
∑

i=1

A1ir1i(t), | r1i(t) |≤ r̄1

∆A2(t) =

k2
∑

i=1

A2ir2i(t), | r2i(t) |≤ r̄2

∆B1(t) =

l1
∑

i=1

B1ip1i(t), | p1i(t) |≤ p̄1

∆B2(t) =

l2
∑

i=1

B2ip2i(t), | p2i(t) |≤ p̄2 (2)

whereA1i, A2i, B1i, B2i are given matrices with con-
stant elements determining the uncertainty structure
in the state, input, and delay terms.
The uncertain parameters r1i, r2i, p1i, p2i are
Lebesgue measurable functions, possibly time-
varying, that belong into pre-specified bounded
ranges (2), where r̄1, r̄2, p̄1, p̄2 are positive scalars;
since their values can be taken into account by the
respective uncertainty matrices, it is assumed that
r̄1 = r̄2 = p̄1 = p̄2 = 1, without loss of generality.
Moreover, the advantage of the affine type uncertainty
description (2) is that it allows the uncertainty matri-
ces to have unity rank and thus to be written in form
of vector products of appropriate dimensions,

A1i = d1ie
T
1i, i = 1, ..., k1

A2i = d2ie
T
2i, i = 1, ..., k2

B1i = f1ig
T
1i, i = 1, ..., l1

B2i = f2ig
T
2i, i = 1, ..., l2 (3)

Obviously, the above decomposition is not unique;
hence, the designer has several degrees of freedom in
choosing the vector products, in order to achieve the
design objectives. By using the vectors in (3), define

the matrices,

D1 := [d11...d1k1
], E1 := [e11...e1k1

]

D2 := [d21...d2k2
], E2 := [e21...e2k2

]

F1 := [f11...f1l1 ], G1 := [g11...g1l1 ]

F2 := [f21...f2l2 ], G2 := [g21...g2l2 ] (4)

which will be useful in the proposed guaranteed cost
approach.

The time delays in (1) are such that,

0 ≤ d1(t) ≤ d̄1 <∞, ḋ1(t) ≤ β1 < 1

0 ≤ d2(t) ≤ d̄2 <∞, ḋ2(t) ≤ β2 < 1 (5)

∀t ≥ 0.

Associated with system (1) is the quadratic cost
function

J(x(t), t) =

∫

∞

0

[xT (t)Qx(t)+uT (t)Ru(t)]dt (6)

with Q > 0, R > 0, which is to be minimized for a
linear constant gain feedback control law of the form

u(t) = Kx(t) (7)

by assuming (A1, B1) stabilizable, (Q1/2, A1)
detectable and the full state vector x(t) available for
feedback.

In the absence of uncertainty and time-delay, the
above formulation reduces to the optimal quadratic
regulator problem (Anderson and Moore, 1990).
Since uncertainties and time-delays are to be taken
into account, the notions of quadratic stability and
guaranteed cost control have to be considered. The
following definitions are given.

Definition 2.1

The uncertain time-delay system (1)-(5) is quadrat-
ically stabilizable independent of delay, if there ex-
ists a static linear feedback control of the form of
(7), a constant θ > 0 and positive definite matrices
P ∈ R

n×n, R1 ∈ R
n×n and R2 ∈ R

m×m, such
that the time derivative of the Lyapunov-Krasovskii
functional

L(x(t), t) = xT (t)Px(t) +
∫ t

t−d1(t)

xT (τ)R1x(τ)dτ +

∫ t

t−d2(t)

uT (τ)R2u(τ)dτ (8)

satisfies the condition

L̇(x(t), t) =
dL(x(t), t)

dt
≤ −θ ‖ x(t) ‖2 (9)
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along solutions x(t) of (1) with u(t) = Kx(t), for
all x(t) and for all admissible uncertainties and time-
delays, i.e. consistent with (2), (3) and (5), respec-
tively.
The resulting closed-loop system is called quadrati-
cally stable and u(t) = Kx(t) is a quadratically sta-
bilizing control law.

Definition 2.2

Given the uncertain time-delay system (1)-(5) with
quadratic cost (6), a control law of the form of (7)
is called a guaranteed cost control, if there exists a
positive number V(x(0), φ(−d̄1), φ(−d̄2)), such that

J(x(t), t) ≤ V(x(0), φ(−d̄1), φ(−d̄2)) (10)

for all x(t) and for all admissible uncertainties and
time-delays. The upper bound V(.) is then called a
guaranteed cost.

The following Proposition provides a sufficient
condition for quadratic stability and guaranteed cost
control.

Proposition 2.3

Consider the uncertain time-delay system (1)-(5) with
quadratic cost (6). Let a control law of the form
of (7) be such that the derivative of the Lyapunov-
Krasovskii functional (8) satisfies the condition

L̇(x(t), t) ≤ −xT (t)[Q+KTRK]x(t) (11)

for all x(t) and for all admissible uncertainties and
time-delays. Then, (7) is a guaranteed cost control
law and

V(x(0), φ(−d̄1), φ(−d̄2)) = xT (0)Px(0) +
∫ 0

−d̄1

φT (τ)R1φ(τ)dτ +

∫ 0

−d̄2

φT (τ)KTR2Kφ(τ)dτ (12)

is a guaranteed cost for (6). Moreover, the closed-loop
system is quadratically stable.

Proof

By integrating both sides of (11) one obtains
∫ T

0

L̇(x(t), t)dt ≤ −

∫ T

0

[xT (t)Qx(t)+uT (t)Ru(t)]dt

(13)

and thus
L(x(T ), T )− L(x(0), 0) = xT (T )Px(T ) +
∫ T

T−d1(t)

xT (τ)R1x(τ)dτ +

∫ T

T−d2(t)

xT (τ)KTR2Kx(τ)dτ −

xT (0)Px(0)−

∫ 0

−d1(t)

xT (τ)R1x(τ)dτ −

∫ 0

−d2(t)

xT (τ)KTR2Kx(τ)dτ ≤

−

∫ T

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (14)

Since (11) is satisfied for L > 0, it follows from Def-
inition 2.1 that (9) is also satisfied for θ = λmin(Q+
KTRK). Consequently u(t) = Kx(t) is a quadrati-
cally stabilizing control law and thus L(x(t), t) → 0
as T →∞ along solutions x(.) of system (1). Conse-
quently, the above inequality yields

∫

∞

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt ≤

xT (0)Px(0) +

∫ 0

−d̄1

φT (τ)R1φ(τ)dτ +

∫ 0

−d̄2

φT (τ)KTR2Kφ(τ)dτ (15)

and thus
J(x(t), t) ≤ V(x(0), φ(−d̄1), φ(−d̄2)) (16)

for V(x(0), φ(−d̄1), φ(−d̄2)) given by (12).

Remark 2.4

The condition resulting from Proposition 2.3 is a
delay-independent condition. It is well known (Li and
de Souza, 1997), (Kolmanovskii et al., 1999)that con-
trol laws arising from delay-independent conditions
are likely to be conservative. Besides, quadratic sta-
bility and guaranteed cost approaches provide conser-
vative solutions, as well. A means to reduce conser-
vatism consists in minimizing the upper bound of the
quadratic performance index by finding the appropri-
ate guaranteed cost control law. Such a solution will
be sought in the next Section.

3 SOLUTION IN THE LMI
FRAMEWORK

In order to determine the unity rank uncertainty de-
composition in an ”optimal” way such that the guar-
anteed cost control law minimizes the corresponding
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guaranteed cost bound, an LMI objective minimiza-
tion problem will be solved. The uncertainty decom-
position (3) can be written as (Fishman et al., 1996),

A1i = (s
1/2
1i d1i)(s

−1/2
1i e1i)

T i = 1, ..., k1

A2i = (s
1/2
2i d2i)(s

−1/2
2i e2i)

T i = 1, ..., k2

B1i = (t
1/2
1i f1i)(t

−1/2
1i g1i)

T i = 1, ..., l1

B2i = (t
1/2
2i f2i)(t

−1/2
2i g2i)

T i = 1, ..., l2(17)

where sij , tij are positive scalars to be determined
during the design procedure. For this purpose, diago-
nal positive definite matrices are defined,

S1 := diag(s11, ..., s1k1
)

S2 := diag(s21, ..., s2k2
)

T1 := diag(t11, ..., t1k1
)

T2 := diag(t21, ..., t2k2
) (18)

The existence of a solution to the guaranteed cost con-
trol problem is obtained by solving an LMI feasibility
problem. The following Theorem is presented:

Theorem 3.1

Consider the uncertain time-delay system (1)-(5)
with quadratic cost (6). Suppose there exist positive
definite matrices S1, S2, T1, T2, W , R̄1, R̄2, such
that the LMI

Λ(.) WE1 WE2 B1R
−1G1

ET
1 W −S1 0 0

ET
2 W 0 −S2 0

GT
1 R

−1BT
1 0 0 −T1

GT
2 R

−1BT
1 0 0 0

R−1BT
1 0 0 0

W 0 0 0
W 0 0 0

B1R
−1G2 B1R

−1 W W
0 0 0 0
0 0 0 0
0 0 0 0
−T2 0 0 0
0 − 1

β2

R̄2 0 0

0 0 − 1
β1

R̄1 0

0 0 0 −Q̂

< 0 (19)

where

Λ(.) = A1W +WAT
1 −B1R

−1BT
1 +A2A

T
2 +

B2B
T
2 +D1S1D

T
1 +D2S2D

T
2 + F1T1F

T
1 +

F2T2F
T
2 +B1R

−1R−1BT
1 (20)

and
Q̂ = (In +Q)−1 (21)

R̄1 = R−11 (22)

R̄2 = R−12 (23)

admits a feasible solution (S1, S2, T1, T2, W , R̄1,
R̄2). Then, the control law

u(t) = −R−1BT
1 Px(t) (24)

with

P := W−1 (25)

is a guaranteed cost control law. The corresponding
guaranteed cost is

V(x(0), φ(−d̄1), φ(−d̄2)) = xT (0)Px(0) +
∫ 0

−d̄1

φT (τ)R1φ(τ)dτ +

∫ 0

−d̄2

φT (τ)PB1R
−1R2R

−1BT
1 Pφ(τ)dτ (26)

Proof

The time derivative of the Lyapunov-Krasovskii func-
tional is

L̇(x(t), t) = 2xT (t)Pẋ(t) + xT (t)R1x(t)−

(1− ḋ1(t))x
T (t− d1(t))R1x(t− d1(t)) +

xT (t)KTR2Kx(t)− (1− ḋ2(t))

xT (t− d2(t))K
TR2Kx(t− d2(t)) (27)

By using (1), (5) and (17), one obtains the inequality

L̇(x(t), t) ≤ 2xT (t)P{[A1 +∆A1(t)]x(t) +

[A2 +∆A2(t)]x(t− d1(t))−

[B1 +∆B1(t)]R
−1BT

1 Px(t)−

[B2 +∆B2(t)]R
−1BT

1 Px(t− d2(t))}+

xT (t)R1x(t)− (1− β1)x
T (t− d1(t))R1x(t− d1(t)) +

xT (t)PB1R
−1R2R

−1BT
1 Px(t)− (1− β2)

xT (t− d2(t))PB1R
−1R2R

−1BT
1 Px(t− d2(t)) (28)

which is to be verified for all x(.) ∈ R
n. Further-

more, by using the identity 2 | ab |≤ a2 + b2, for
any a, b, ∈ R

n, as well as (2)-(4), (17) and (18), the
following quadratic upper bounding functions are de-
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rived,

2xT (t)P∆A1(t)x(t) ≤| 2x
T (t)P∆A1(t)x(t) |≤

k1
∑

i=1

| 2xT (t)PA1ir1i(t)x(t) |≤

k1
∑

i=1

| 2xT (t)P (d1is
1/2
1i )(e1is

−1/2
1i )Tx(t) |≤

xT (t)P

k1
∑

i=1

s1id1id
T
1iPx(t) +

xT (t)

k1
∑

i=1

s−11i e1ie
T
1ix(t)

= xT (t)PD1S1D
T
1 Px(t) +

xT (t)E1S
−1
1 ET

1 x(t) (29)

∀x(.) ∈ R
n. In a similar way one obtains

2xT (t)PA2x(t− d1(t)) ≤ xT (t)PA2A
T
2 Px(t)

+xT (t− d1(t))x(t− d1(t)) (30)

2xT (t)P∆A2(t)x(t− d1(t)) ≤

xT (t)PD2S2D
T
2 Px(t) +

xT (t− d1(t))E2S
−1
2 ET

2 x(t− d1(t)) (31)

−2xT (t)P∆B1(t)R
−1BT

1 Px(t) ≤

xT (t)PF1T1F
T
1 Px(t) +

xT (t)PB1R
−1G1T

−1
1 GT

1 R
−1BT

1 Px(t)(32)

−2xT (t)PB2R
−1BT

1 Px(t− d2(t)) ≤

xT (t)PB2R
−1BT

2 Px(t) +

xT (t− d2(t))PB1R
−1BT

1 Px(t− d2(t))(33)

−2xT (t)P∆B2(t)R
−1BT

1 Px(t− d2(t)) ≤

xT (t)PF2T2F
T
2 Px(t) +

xT (t− d2(t))PB1R
−1G2T

−1
2 GT

2 R
−1BT

1 P

x(t− d2(t)) (34)

The above inequalities are true ∀x(.) ∈ R
n. By us-

ing these quadratic upper bounding functions, it is
straightforward to show that the guaranteed cost con-
dition (11) is satisfied if

A1 +AT
1 P − PB1R

−1BT
1 P +Q+

P [D1S1D
T
1 + F1T1F

T
1 +D2S2D

T
2 +

F2T2F
T
2 +A2A

T
2 +B2B

T
2 ]P +

PB1R
−1[G1T

−1
1 GT

1 +G2T
−1
2 GT

2 +

Im + β2R2]R
−1BT

1 P + In +

E1S
−1
1 ET

1 + E2S
−1
2 ET

2 + β1R1 < 0 (35)

By multiplying every term of the above matrix
inequality on the left and on the right by P−1 := W
and by applying Shur complements, the LMI form
(19) is obtained.

In the sequel, a minimum value of the guaran-
teed cost is sought, for an ”optimal” choice of the
rank-1 uncertainty decomposition. For this purpose,
the minimization of the guaranteed cost is obtained
by solving an objective minimization LMI problem.

Theorem 3.2

Consider the uncertain time-delay system (1)-(5) with
quadratic cost (6). Suppose there exist positive defi-
nite matrices S1, S2, T1, T2, W , R̄1, R̄2, M1, M2,
M3, such that the following LMI objective minimiza-
tion problem

minX J̄ = minX (Tr(M1) + Tr(M2) + Tr(M3))
(36)

X = (S1, S2, T1, T2,W, R̄1, R̄2,M1,M2,M3), with
LMI constraints (19) and

[

−M1 In
In −W

]

< 0 (37)

[

−M2 In
In −R̄1

]

< 0 (38)
[

−M3 Im
Im −R̄2

]

< 0 (39)

has a solution X (.). Then, the control law

u(t) = −R−1BT
1 Px(t) (40)

with
P := W−1 (41)

is a guaranteed cost control law. The corresponding
guaranteed cost

V(x(0), φ(−d̄1), φ(−d̄2)) = xT (0)Px(0) +
∫ 0

−d̄1

φT (τ)R1φ(τ)dτ +

∫ 0

−d̄2

φT (τ)PB1R
−1R2R

−1BT
1 Pφ(τ)dτ (42)

is minimized over all possible solutions.

Proof

According to Theorem (3.1), the guaranteed cost (42)
for the uncertain time-delay system (1)-(5) is ensured
by any feasible solution (S1, S2, T1, T2,W, R̄1, R̄2)
of the convex set defined by (19). Furthermore, by
taking the Shur complement of (37) one has −M1 +
W−1 < 0 =⇒M1 > W−1 = P =⇒ Trace(M1) >
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Trace(P ). Consequently, minimization of the trace
of M1 implies minimization of the trace of P . In
a similar way it can be shown that minimization of
the traces of M2 and M3 implies minimization of the
traces of R1 and R2, respectively. Thus, minimiza-
tion of J̄ in (36) implies minimization of the guaran-
teed cost of the uncertain time-delay system (1)-(5)
with performance index (6). The optimality of the so-
lution of the optimization problem (36) follows from
the convexity of the objective function and of the con-
straints.

4 EXAMPLE

Consider the second order system of the form of
equation (1)with nominal matrices,

A1 =

[

−2 1
0 1

]

, A2 =

[

−0.2 0.1
0 0.1

]

,

B1 =

[

0
1

]

, B2 =

[

0
0.1

]

The uncertainty matrices on the state and con-
trol as well as on the delay matrices are according to
(2),

∆A1 =

[

0 0
0.1 0.1

]

, ∆A2 =

[

0 0
0.03 0.03

]

,

∆B1 =

[

0
0.1

]

, ∆B2 =

[

0
0.03

]

and hence, the rank-1 decomposition may be
chosen such that,

D1 =

[

0
0.1

]

, D2 =

[

0
0.03

]

, E1 = E2 =

[

1
1

]

,

F1 =

[

0
0.1

]

, F2 =

[

0
0.03

]

, G1 = G2 = 1

The state and control weighting matrices are,
respectively, Q = I2, R = 4. It is β1 = 0.3,
β2 = 0.2.
By solving the LMI objective minimization problem
one obtains the guaranteed cost J̄ = 25.1417.
The optimal rank-1 decomposition is obtained
with s1 = 0.6664, s2 = 2.2212, t1 = 2.5000,
t2 = 8.3333. Finally, the corresponding control gain
is K = [−0.2470 −6.0400].

5 CONCLUSIONS

In the previous sections, the problem of guaranteed
cost control has been studied for the class of uncer-
tain linear systems with state and input time varying
delays. A constant gain linear state feedback control

law has been obtained by solving an LMI feasibility
problem. The closed-loop system is then quadrati-
cally stable and preserves acceptable performance for
all parameter uncertainties and time varying delays
of a given class. The system performance deviates
from the optimal one, in the sense of LQR design of
the nominal system, due to uncertainties and time de-
lays. However, the performance deterioration is lim-
ited and this is expressed in terms of a performance
upper bound, namely the guaranteed cost. In order to
make the GC as small as possible, one has to solve
an LMI minimization problem. The minimal upper
bound corresponds to the ”optimal” rank-1 decompo-
sition of the uncertainty matrices.
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