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Abstract: The idea of complex sequencing is strongly related to scheduling and real time systems. It appears when a 
resource has to be shared by more than one user or when a job must be handled by some concurrent entities. 
The originality of our research is mainly to build a dynamic link between a scheduling solution and a 
simulation approach based on Petri Nets (PN). This paper addresses with the modeling of an electroplating 
line with max plus algebra theory and Petri Nets. As a schedule representing a sequence that contains a 
series of jobs, we can obtain a corresponding polynomial by using Lagrange interpolation. Then, we can use 
these polynomials to ensure a real time connection between a schedule procedure and a Petri nets 
simulation. The use of this approach will lead us to deal with different disturbances. Indeed, for any 
disturbance we should calculate a new schedule and a new polynomial will be found. This polynomial will 
be assigned to Petri nets Model without modifying its structure.   

1 INTRODUCTION 

The scheduling approach is realized by using max 
plus algebra theory. It is based on a model that we 
have previously developed. We first look for a 
mathematical model to find a cyclic schedule for 
the hoist Scheduling Problem (HSP) (Bloch, 1999). 
Therefore, concurrence appears for resource 
utilization and only deterministic discrete event 
systems can be described in the max algebra 
(Gaubert, 1992). A relaxation is then proposed to 
find a first solution. Then some heuristics (rules) 
are introduced to respect resource constraints and 
an admissible solution (schedule) is proposed.  

The second approach is based on Petri nets 
(PN) their practical use for discrete event systems 
are well known in the literature. Nevertheless, 
more powerful tools are necessary to deal with 
some complex systems. The functions attached to 
arcs in Colored Petri nets (CPN) sometimes seem 
to be more difficult to understand. We propose 
here to use Z/pZ Petri nets to model some complex 
sequencing. A mathematical structure is defined to 
represent the relation between the colors (Mabed, 
2003).  

This algebraic structure is an isomorphism 
between a set of colors and a finite field Z/pZ.  

2 PETRI NETS AND EVENT 
GRAPH 

A PN is a bipartite directed graph with two types 
of nodes: the places and the transitions. These 
nodes are joined by directed arcs. A transition Xi is 
enabled if and only if each of its input places 
contains at least one token (assuming that the 
weight of each arc is equal to 1).  

It is also possible to assign a time to each place 
or transition. In that case, the Petri net is called 
respectively P-timed or T-timed Petri nets. Such a 
time represents the time taken by the related 
transition to fire.  

In a P-Timed Petri Nets (P-TPN), a firing is 
initiated by removing token from each of the input 
places after a period of time equals to the time 
assigned to the place. Then, one token appears in 
each output place at the instant when the firing 
terminates. The reader is referred to (Mabed, 2002) 
for details. 

An event graph is a Petri net such that each 
place has exactly one input transition and one 
output transition and such that every arc is 1-
weighted. In this way only synchronization 
constraints (logical AND) can be represented, 
whereas alternative choices (corresponding to 
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logical OR) cannot be represented. Figure (1) gives 
an example of a P-timed event graph. Transition X1 
(resp X2) will be fired if there is a token in both 
places P1 and P6 (resp P3 and P5). In P1 and P3, 

token must spend a period of time equals 
respectively to 1 and 2. This is the time assigned to 
these tokens in these places before leaving.  

 
 

3 MAX PLUS THEORY 

The dioid IRmax = (IR∪{-∞},max,+) is an 
algebraic structure with two operations, max as 
addition (denoted by ⊕) and + as multiplication 
(denoted by ⊗ or simply omitted). e= -∞ plays the 
role of the null element for ⊕ (such that e⊕a=a) 
and ε=0 plays the role of the unit element for ⊗ 
(such that a⊗ε=ε⊗a=a). We refer the reader to 
(Cohen, 1989) (Spacek, 1998) to learn the main 
properties of this structure. 

The combinatorial properties of dioids (i.e. 
associativity, commutativity of ⊕ and ⊗ and 
distibutivity of ⊗ over ⊕), allow matrix 
manipulations in a conventional way. It is no hard 
to see that the following equations must hold for 
the above example in figure 1.  
Xi(k) represents the date of the kth firing of 
transition Xi. 
X1(k) ≥ U1(k) + 1 and X1(k) ≥ X2(k-1)  
X2(k) ≥ U2(k-1) + 2 and X2(k) ≥  X1(k)  
X3(k) ≥ X1(k) and X3(k) ≥ X2(k)  

or 
X1(k) ≥  max (X2(k-1),U1(k) + 1)  
X2(k) ≥  max (X1(k), U2(k-1) + 2)  

 
 
 
 

X3(k) ≥  max(X1(k), X2(k))  

For instance X2(k) can be fired if the transitions 
X1(k) and U2(k-1) have been fired and if the 
minimum duration allowed to the places has been 
respected.   
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We can easily write : 

≥)k(X
v

0i=
⊕ A(i) X(k-i) ⊕ 

w

0j=
⊕ B(j) U(k-j) 

We can solve this problem via rational methods 
familiar in language theory (introducing “star” 
operation A*=e ⊕ A ⊕ A2 ⊕ …⊕An) 

  

X(k) ≥ 
v

1i=
⊕ )ik(X)i(A − ⊕

w

0j=
⊕ )jk(U)j(B −   

With )i(A  = (A(0))* A(i) and )j(B = (A(0))* B(j) 

Figure 1:An event graph
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4 DESCRIPTION OF THE 
PROBLEM 

Production line fed with one or more hoists are 
used in a large number of cyclic industrial 
applications. The moving devices (hoists) transport 
products from one station to another, according to 
a sequence order. This problem is characterized by 
the nature of the processing times, which are 
variables of the model. Each of them has to take a 
value in a given interval [ti, Ti]. The result of a 
schedule is firstly the sequence of the movements 
and secondly the values of all processing times. 

We consider a production line with 13 different 
stations and one hoist. These stations are arranged 
in a row and are fed with one hoist (Baptiste, 1993) 
(Bloch, 1999). 

 
The first station represented by tank (0), is a 

shared station for both loading and unloading 
purpose. A soak operation is performed in each 
other station see figure 2. The hoist is programmed 
to perform inter-process moves of the products. 
Each one consists of four simple hoist operations:  
− Raise a product from a process tank; 
− Pause over the tank to allow drip-off; 

− Transport the product to the next process tank 
− Lower the product in that process tank 

After performing an inter-process move, the 
hoist travels to another process tank for the next 
scheduled move. The following assumptions will 
be respected throughout this presentation:  
− The processing time in each tank is bounded 
between a minimal and a maximum duration [ti, Ti] 
: i = 0 to 12; 
− Each tank can receive only one product at the 
same time; 
− No buffer exists between tanks; 
− We deal with mono-product case: each 
product must respect the same sequence S=0,1,2, 
3, …, 11, 12, 0. 

 

 
5 SCHEDULING 

Let us study the mono-products modeling case 
(one hoist, tanks with unit capacity, same 
processing for all the products, n products on the 
line).Each product will be successively treated in 
several tanks and then deposed into the load \ 
unloading station (tank(0)). There are two major 
statuses: product transfer from a tank to another 
one and processing. We will consider the notations 
given below. 

 

 
− Xi(k)  :  the starting time to enable transition 
Xi for the kth time; 
− r(i, i+1)  :  the in charge hoist traveling time 
from tank i to tank (i+1); 
− ti , Ti :  minimum and maximum soak time 
limits in tank i ; 
− Pj  :  Place number j  
− Dv(i, i+1)  :  the empty hoist traveling time 
from tank i to tank (i+1) ; 
− Ui(k) :  command vector representing the 
availability of the hoist; 

Figure 2: An Electroplating line (1 hoist and 13 tanks)
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5.1 P-Timed Event Graph 

Two labels are given with each place. The first one 
(t) is the minimum time that a token entering the 
place must spend. The second label (T) is the 
maximum time that this token can spend in this 
place. Each tank has its own given bounded time 
intervals. If a token enters a place of Timed 
Colored Petri Nets (TCPN), it must spend a 
minimum time ti in this place and leave it at a 
maximum time Ti at the latest. Each time a tank is 
emptied, it is immediately available for the next 

product on the line. The last operation of each 
product sequence is to unload it. We represent this 
problem by an event graph figure 3. 

The first tank (token(0)) filling the unloading 
and loading tank, we will assume that there is no 
event before this. 

In figure 3 each time a transition is fired, it will 
mean either a product is being transported from a 
tank to another or that it is processed. We suppose 
that the hoist is always available (otherwise 
concurrence will appears for resource utilisation) 

 

5.2 Mathematical Model 

According to the previous example, we can 
represent the event graph presented on figure 3 by 
the following equations: 
 
X1(k) ≥ X3(k-1) ⊕ (X2(k)⊗(-T1)) ⊕ V(k) 
X2(k) ≥ U1(k) ⊕ (X1(k)⊗t1) ⊕ (X3(k)⊗(-r1,2)) 
X3(k) ≥ X5(k-1) ⊕ (X4(k)⊗(-T2)) ⊕ (X2(k)⊗r1,2)  
X4(k) ≥ U2(k) ⊕ (X3(k)⊗t2) ⊕ (X5(k)⊗(-r2,3)) 
. 
. 
X26(k) ≥ U13(k) ⊕ (X25(k)⊗t13) ⊕ (X27(k)⊗(-r13,1)) 
X27(k) ≥ X26(k)⊗r13,1 

 
This system can be also written with matrix 

notations:  
 
and gives the vector : 

)k(Vb)k(UB)1k(XA)k(*X 1 ⊗⊕⊗⊕−⊗=  
 
These vectors (k=1, 2,…,n) are represented by 

a matrix. In each column, we can find the starting 
time of transport or processing for each product k. 
Nevertheless, this solution must be performed 
according to the hoist constraints (ie. only one 
hoist is available in the line). The hoist availability 
constraint is the most restrictive one as the hoist 
corresponds to a critical resource of the problem. 
Each move of product k from the tank where its ith 
treatment occurs to the tank where its i+1th one 
occurs, takes place in the following interval [Xi(k), 
Xi(k)+ r(i, i+1)]. As all the movements are realized 
by the same hoist, we must express that all these 
intervals are disjoined. The objective here is to find 
an admissible schedule from the solution proposed 
by the (max, +) theory and then improve it to find 
an optimal or a near optimal solution.  

For all couples of transport operations of the 
product k (resp k+1) from tank (i) (resp j) to tank 
(i+1) (resp. j+1) either transport operation of k 
preceeds transport operation of k+1 (case 1) or 

Figure 3: Hoist scheduling P-Timed event graph

))k(UB())1k(XA())k(XA()k(X 10 ⊗⊕−⊗⊕⊗≥

))k(Vb( ⊗⊕
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transport operation of k+1 preceeds transport 
operation of k (case 2).  

This kind of constraints are called disjunctions, 
it corresponds to two mutually exclusive 

constraints. 

 
As we can see on the example detailed on 

figure 4, we have two products k and (k+1) and 
two operations request the same resource (hoist) 
during a period of time: 
− Move product k from tank 4 to tank 5, during 
the interval [461,485] 
− Move product k+1 from tank 2 to tank 3, 
during the interval [443,472] 

 
To deal with this conflict, we have to choose 

between two cases as seen before. In figure 4 we 
choose the case 2: transport operation of k+1 
preceeds transport operation of k. It means that a 
delay will affect the others tasks for this product. 
The question is: how to choose how a conflict can 
be treated? The transcription of our model into a 
computable version is simply the translation of all 
linear equations. When a solution is found, we 
check that the hoist constraints are respected, if not 
we try to resolve this conflict by an adapted 
heuristic. We can notice that each conflict 
corresponds to two alternatives and needs to make 
a choice during the resolution.  

In fact, when the resolution procedure reaches 
a choice point it divides the search space into two 
branches. Exploring all these solutions will take us 
a long time. The situation has led us to develop a 
new robust method governed by stochastic 
methods. These methods (not developed in this 

paper) serve as a meta-strategy to choose the best 
way to deal with the management of the hoist 
conflicts. The objective of this work is to explain 
how to build a dynamic link between a scheduling 
solution and a simulation approach based on PN. 

Before modeling the electroplating line we 
should present how we can translate this schedule 
to a polynomial. As a schedule represents a 
sequence that contains a series of jobs, we can 
obtain a corresponding polynomial by using 
Lagrange interpolation. Then, this polynomial will 
be used to valuate PN arcs. 

5.3 Example  

Let us consider a simple sequence S representing a 
schedule: 

S =(S0,S1,…,S(p-1)) 
We can obtain the corresponding polynomial 

P(X) by defining a finite ring structure with p 
distinct elements {0, 1, 2, …, p-1} isomorphic with 
Z/pZ (p: prime). On this set, we define a 
polynomial function P(X) as an automorphism of 
Z/pZ.  

∑
−

=

=
1p

0i

P(X) ai Xi  

 

Figure 4: How to deal with conflicts (case 2)
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A polynomial in Z/pZ[X] is completely given 
by its coefficients A0 to A(p-1). We already prove 
that a matrix [Lp] exists there, making the 
correspondence between the p elements of S. 
t[A0, A1, …, A(p-1)]=[Lp].t[S0 S1 … S(p-1)] 
[ p

kL (X)]= [1 X X2 … X(p-1)]. [Lp]. [Ik] 
Where Ik is a column matrix whose elements: equal 
1 in kth row and = 0 elsewhere. 
[ p

kL (X)] is a (p-1) degree polynomial verifying the 
conditions:  
[ p

kL (k)]=1 and [ p
kL (X)]= 0, ∀ X≠k 

 
This polynomial is the interpolation Lagrange 

polynomial, which can be written, if considering 
the first theorem of Fermat :   
[ p

kL (X)]= 1+(p-1)(X+p-k)(p-1) 
 
When we develop (X+p-k)(p-1) by Newton’s 

binomial in Z/pZ, we obtain [Lp] matrix: 
 
 
 

 
[Lp]= 

 
 
 
 
Let us apply this method to the sequencing 

vector S=(0,6,1,4,2,5,3), for p=7 the matrix [L7] is 
: 

 
 
 
 
 
[L7]= 
 
 
 
 
 

P(X)= [1 X X2 … X6].[L7].[F] 
with [F]=t[P(0) P(1) P(2) P(3) P(4) P(5) P(6)] thus 
equal to t[6 4 5 0 2 3 1]. 
We obtain P(X) =6+6.X+6.X2+X4+6.X5 

and easily verify that P(0)=6, P(6)=1, P(1)=4, 
P(4)=2, P(2)=5, P(5)=3, P(3)=0; 

As said before if the length of the sequence 
does not correspond to a prime number (n<p), we 
go back to the previous case and consider (p-m) 
fictitious tasks that will not be used. 

6 MODELING :Z/PZ TPN 
REACTIVE MODEL 

A complex system needs to be dynamically 
controlled. Even, if the polynomials introduced in 
this presentation show a clear evolution of the 
standard functions used in traditional TCPN, a 
characteristic does remain specific to all these 
polynomials. It consists of the definition of the 
color set. In Z/pZ TPN, there is only a global color 
set and all the polynomials take its values in it. 
This is why a circumstantial readjustment is 
always possible (Mabed, 2003).The first tank 
(token (0)) filling the unloading and loading tank, 
we will assume that there is no event before this. In 
this Petri Nets, tokens represent tanks. Each time a 
transition is fired, it means either a product is being 
transported from a tank to another, or that it is 
processed. 

We are interested here in modeling an 
electroplating line with Z/pZ Timed Petri Nets 
(TPN). It illustrates that these nets can be easily 
applied to various industrial problems. Modifying 
a sequence leads to change the Z/pZ TPN 
parameters (i.e. polynomial) while the net structure 
remains the same. 

 
NB: For a simple use of Petri Nets parameters we 
replace Ti (the maximum duration in tank i) by δi, 
Ti will represent the transition i. 

Petri nets have been traditionally employed in 
simulating approaches based on discrete event 
systems. Here we create a dynamic link between 
two fields:  
− Scheduling approach: based on several 
stochastic or deterministic methods. 
− Simulation approach based on Petri nets. 

 
We present in figure 5 a global model for the 

HSP problem. This model was built in two 
sections: first, we create a PN model and secondly 
we assign polynomials to this PN. When we 
elaborate this model, several difficulties were 
encountered due to the two associated stations 
(loading, unloading) represented by tank (0). The 
first operation is to load the product, which is 
represented by a processing (color (0) in place P3). 
After a minimal duration of soak the product can 
leave this tank (represented by color (0)) to another 
one (represented by the successor of (0)+1=(1)) 
according to the set definition 
E={0,1,2,3,4,5,…,10,11,12}. Each product will be 
successively treated in several tanks and then 
deposed into the load \ unloading station (tank(0)).  

 
There are two major statuses:  
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− Product transfer from a tank to another one: 
The sequence representing the schedule has been 
realized by the calculus of a polynomial SC. This 

polynomial characterizes the results of max plus 
approach. 
− Processing 

These operations will continue until we use the 
color (12), its successor will be (0) and the 
transition T8 will be fired to unload the product. 
Each evolution or disturbance lead this set 
unchanged. Only the parameters are to be changed. 
The model presented below allows a dynamic 
management. 

7 CONCLUSION 

The originality of this study is mainly to apply 
both: max plus algebra theory and Z/pZ TPN for 
modeling and evaluating an industrial problem. We 
have seen in this paper that a model can be 
dynamically controlled by combining existing 
tools.  

We first use max plus algebra theory to find a 
schedule for an industrial application known as a 

hoist scheduling problem. Using the analogy 
between timed event graphs and conventional 
linear systems lead us to propose a schedule 
approach. The critical point in this work is to 
improve the results in order to find an optimal 
solution. The use of stochastic methods to explore 
more solutions can be the best way to reach this 
objective. 

After this, we present a model by using Z/pZ 
Timed Petri Nets in order to control this system. A 
structure of field Z/pZ is proposed to allow the 
processing of colors succession with mathematics. 
This mathematical structure allows an easy 
modeling of sequences by polynomials and 
symbolic calculation.  

Furthermore, mathematical support may enable 
us to consider various problem of optimization, 
particularly those dealing with the resolution of 
scheduling problems, one of our points of interest.  

Figure 5: Z/pZ TPN Reactive Model
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We also note that this approach offers many 
advantages to deal with complex models. 
Developing these polynomials to evaluate models 

facilitates modeling any kind of systems. This new 
tool can be used as basis for further studies on 
scheduling. 
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