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Abstract: This paper presents a method for cooperation in the construction of Voronoi diagrams which is suitable for 
use in dangerous tasks performed by a team of robots. The algorithm has been implemented on a network of 
eight workstations using the MPI library. Two implementation approaches have been used. In the first one, 
no communication among the robots is required but some degree of redundancy in the work performed by 
the robots may result. In the second approach, a more cooperative scheme is adopted and, as a consequence, 
communication among the robots increases but the work performed by each one is reduced. In both 
approaches, the calculation time decreases almost linearly when adding robots to the team. Nevertheless, the 
second approach, more cooperative, has consistently produced better results. With the achieved speed-up, it 
is possible to use this algorithm in applications where the obstacle configuration within the robot team 
working area changes with time. 

1 INTRODUCTION 

This paper presents a message-passing cooperative 
algorithm for the construction of Voronoi diagrams 
which is suitable for use within a team of 
cooperative robots. The algorithm implementation 
allows the required storage to be evenly distributed 
among the robots and demands little or no 
communication at all among the robots. However, in 
this latter case, the robots may end up doing some 
redundant work.  

Different approaches, such as visibility graphs 
(Pere, 1979), potential fields (Kim, 1991) (Aude, 
1999) and Voronoi diagrams (Lato, 1996), can be 
used in the solution of the path-planning problem. 
This paper is focused on a cooperative 
implementation of the Voronoi diagram by a robot 
team.  

More recently, parallel algorithms for the 
construction of Voronoi diagrams have also been 

presented (Tzio, 1997) (Sudh, 1999). Both 
algorithms have been conceived for implementation 
on dedicated VLSI cellular architectures which are 
based on fine grain parallelism and tight coupling 
between neighbor cells consisting of very simple 
hardware. Therefore, these algorithms are not 
suitable for use in distributed environments such as a 
team of cooperative robots. 

The algorithm works for arbitrarily shaped 
robots, as long as the distance from the robot center 
to its most external point is known, and assumes that 
the arrangement of obstacles within the working area 
is known a priori. However, since the algorithm 
scales very well with the number of robots, it can be 
used to compute new Voronoi diagrams very fast 
whenever the configuration of obstacles change. 
Therefore, the proposed algorithm can be very 
useful in applications where teams of cooperative 
robots work in time-varying environments requiring 
path re-planning due to changes in the obstacle 
configuration. 

307
S. Mendes F., S. Aude J., C. V. Pinto P. and P. L. Aude E. (2004).
CONSTRUCTION OF THE VORONOI DIAGRAM BY A TEAM OF COOPERATIVE ROBOTS.
In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics, pages 307-311
DOI: 10.5220/0001144303070311
Copyright c© SciTePress



Section 2 of this paper describes the basic 
sequential algorithm used to construct the Voronoi 
diagrams and its required data structures. Section 3 
discusses two different approaches for the 
cooperative implementation of this algorithm. In 
Section 4, performance results are presented 
considering implementations of the algorithm on an 
Ethernet cluster of workstations and the use of MPI 
(Message Passing Interface). Finally, in Section 5, 
the main conclusions of the paper are summarized 
and the proposals for future work are presented. 

2 BASIC ALGORITHM 

The proposed algorithm works on a grid of square 
cells that represents the plane working area of the 
robots. The obstacles which are present in this area 
are known a priori and a separate data structure 
holds the coordinates of the obstacle corners and the 
equations of the obstacle edges. In the two-
dimensional plane, the obstacles must be represented 
as a single convex figure or as a set of convex 
figures, including circles. Any non-convex figure 
must initially be broken into two or more convex 
figures before the algorithm starts its operation.  
Circular objects are described by the center 
coordinates and the value of the radius. 

Figure 1: Next Cell Choices 
 

The grid data structure holds status information 
for each cell and the closest obstacle identification 
for every corner of a grid cell. In a typical 
implementation, both the cell status and the obstacle 
identification can be stored in a single byte. Since 
for a grid consisting of N x N cells there are (N+1)2 
corners, the number of bytes needed to store the 
information associated with grid cells status and 
corner information is given by: N2 + (N+1)2, which 
is close to 2N2 for large values of N, thus giving 
O(N2). Therefore, for a 1000 x 1000 grid the 
required amount of storage is around 2 Mbytes. 

The proposed algorithm is based on three very 
simple ideas. The first one is that all the vertices of 
the working area bounding polygon are Voronoi 
vertices. The second one derives from the 
observation that the Voronoi diagram is always a 
connected diagram, in which the Voronoi arcs 

always have at least one intersection point. And the 
third is that if at least 2 cell corners are closer to 
different obstacles then the cell belongs to the 
Voronoi Diagram. Therefore, given a starting point 
for the diagram, it is possible to draw it on a grid by 
checking at each step which is the next neighboring 
cells to be visited. Such cells will be the ones whose 
common edge with the current cell connects two 
corners labeled with different obstacles and is not 
the cell entrance edge. This procedure is shown 
when a Voronoi vertex is reached on Figure 1. 

Based on these three ideas the algorithm finds 
the Voronoi diagram (VD) using the following 
procedure: 

 
begin 
 create a queue to temporarily hold the  
  Voronoi cells; 
 mark all the cells inside the working  
  area as free and all the cells    
  external and around the working area  
 as blocked; 
 choose one of the working area bounding 
  polygon vertices as the VD starting  
  point; 
 mark the corresponding cell as belonging 
  to the VD; 
 insert the starting point in the queue; 
 while the queue is not empty do 
  remove a cell from the queue; 
  mark it as belonging to the VD; 
  for each edge whose corner labels are 
   different 
   if it’s not the entrance edge and  
    not belonging to the diagram then 
    insert this neighbor cell in the 
     queue and fill in its corner's 
     label; 
   end if; 
  end for; 
 end while; 
end; 
 

The algorithm starts by choosing one of the 
working area bounding polygon vertices as the 
Voronoi diagram starting point and inserts it in the 
temporary queue. Then, while this queue is not 
empty, the algorithm removes cells from the queue 
and marks them as belonging to the diagram. For 
each cell marked, the next cell choice procedure is 
used to determine which cells will be put in the 
queue. All cells selected in the previous procedure 
have their four corners labeled with the Euclidean 
distance to the closest obstacle. Finally, the selected 
cells are entered into the queue. The procedure is 
repeated until no more cells can be found in the 
queue. At this point the Voronoi diagram is 
completely determined. 

The amount of computation required for finding 
the closest obstacle to a particular cell corner is 
reduced if the algorithm computes only the distances 
to obstacle edges which are “visible” from that 
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corner. A limited but effective visibility test of an 
obstacle edge can be performed by finding the inner 
product between a perpendicular outward vector to 
the obstacle edge and a vector which starts at the cell 
corner under consideration and points to any point 
inside the obstacle polygon or on its edges. If the 
inner product is negative, the edge is visible, 
otherwise it is invisible and no distance calculations 
need to be performed. 

The procedure implemented by the described 
algorithm would be sufficient to find the Voronoi 
diagram for solving the path planning problem for 
robots which are reduced to a point. In order to make 
the algorithm work for arbitrarily shaped robots, a 
slight modification has to be introduced. Let us 
consider that the distance from the robot center to its 
most external point is r. Then, when the algorithm 
finds a cell which should belong to the Voronoi 
diagram, it must perform a proximity test to verify if 
the distances from all the cell corners to the closest 
obstacles are greater than r. If this is true then the 
cell is marked as belonging to the Voronoi diagram 
and inserted in the queue. Otherwise the cell is 
marked as blocked but it is still inserted in the 
queue, because its neighbors may still belong to the 
Voronoi diagram which will establish possible paths. 

The algorithm error in defining the Voronoi 
diagram is less than the size of a cell diagonal. If, for 
instance, the robot working area is a 10m x 10m 
square and the grid structure is defined as a 1000 x 
1000 cell array, the maximum algorithm error is less 
than 1.41 cm since the cell side is 1 cm long. 

3 COOPERATIVE STRATEGY 

The proposed cooperative implementation of the 
algorithm described in Section 2 divides the working 
area of the robots into Nr slices, where Nr is the 
number of available robots. Each robot has a 
working area slice associated with it and is 
responsible for finding the Voronoi diagram within 
that slice. Therefore, only a fraction (1/Nr) of the 
grid data structure needs to be stored by each robot. 
The data structure containing information on the 
obstacle corner coordinates and on the equations of 
the obstacle edges is broadcast to all the robots. Two 
approaches have been adopted to solve this problem. 
The first one does not require any communication, 
but leads to some redundant work performed among 
the robots. In the second approach, some 
communication between the robots working on 
neighbor slices is required but, as a consequence, a 
more cooperative work pattern is adopted. 

If we assume the working area is rectangular and 
the cut lines are vertical lines, it is possible to say 

that the Voronoi diagram will certainly cross the 
vertical borders of a slice. So, in the first approach, 
every robot searches both vertical border lines of its 
assigned slice for grid cells representing Voronoi 
points, as shown in Figure 2, where the use of four 
processors (P0 to P3) is considered. 

Once a Voronoi point is found, the Voronoi 
diagram segment starting at the corresponding cell 
and within robot slice is determined using the 
algorithm described in Section 2. This procedure is 
repeated until all the cells on both vertical border 
lines have been visited. The two robots with the 
leftmost and the rightmost slices assigned to them 
can do less work because they know a priori the 
working area corners are Voronoi vertices and, 
therefore, they can draw the Voronoi diagram 
segments starting from these two known points. So, 
each vertical border line is analyzed twice by two 
different robots as can be seen in Figure 2. 

Figure 2: Working Area Partition 
 
In the second approach, this redundant work is 

avoided by assigning, for instance, the job of 
searching a vertical border line to the robot which is 
responsible for defining the Voronoi diagram within 
the border right slice. The cell coordinates 
corresponding to Voronoi points which have been 
found on the border line are sent to the robot 
processing the neighbor slice on the left. When the 
coordinates of a cell are received, the robot puts the 
cell on its queue. This cell will be used as the 
starting point for finding a Voronoi diagram 
segment. With this second approach, each robot 
searches for Voronoi points on a single vertical 
border line and receives the information on Voronoi 
points on the other border line from its right side 
neighbor. Therefore, each robot does less work and 
uses communication to help its left side neighbor to 
do its work. 

4 EXPERIMENTAL RESULTS 

The parallel algorithm described in Section 2 has 
been implemented in C with the use of MPI 
(Message Passing Interface) for implementing the 
communication functions on an Ethernet cluster 
consisting of 6 workstations, with 2.4 GHz Intel 
Pentium 4 processors and 128 Mbytes of memory. 
This environment has been chosen for the 
experiments because it is similar to the actual 
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environment in which the cooperative robots use 
Ethernet-like wireless communication. 
 

Figure 3: Voronoi Diagram – Sea of Triangles 
 

Two obstacle arrangements have been 
considered in the experimental work. In the first one, 
a sea of triangles is placed within the working area. 
Figure 3 shows the resulting Voronoi diagram 
produced for this arrangement by the proposed 
algorithm. The lighter lines represent Voronoi 
diagram segments which have failed the proximity 
test.  

In the second example, less obstacles are present 
but they have different types of shapes, including 
circles, dots and non-convex polygons. Figure 4 
shows the resulting Voronoi diagram for this 
obstacle arrangement (mixed shapes). 

For both obstacle arrangements shown in Figures 
3 and 4, the application of the visibility test has been 
able to reduce by nearly 40% the amount of 
computational work performed by the algorithm. 

For each example situation, three grid sizes have 
been considered in the experiments: a small (1024 x 
1024), a medium (2048 x 2048) and a large (4096 x 
4096) one. For all combinations of obstacle 
arrangements and grid sizes, both approaches for the 
algorithm parallel implementation described in 
Section 3 have been evaluated considering the use of 
1, 2, 4 or 6 workstations in the network. 

As a higher grid resolution is used, more work 
has to be done by the processors in both approaches 
(particularly in the no communication approach) 
since the number of cells per slice border increases 

and the number of Voronoi points in the diagram 
also increases. However, the amount of work grows 
linearly with the grid dimension. Therefore, the 
algorithm performance can scale very well. 

 

Figure 4: Voronoi Diagram - Mixed Shapes 
 
It should also be noticed that the computational 

work associated with the determination of Euclidean 
distances between each candidate Voronoi point and 
the visible edges is greater when the sea of triangles 
arrangement is considered since the number of 
obstacles is higher. This issue is important because, 
with the no communication approach, the number of 
Euclidean distances that are calculated is 
approximately twice as big as the number of 
distances evaluated by the cooperative approach. So, 
when the amount of calculation is reduced, the no 
communication approach was able to produce 
smaller running times than the cooperative approach 
in two situations in which only two processors were 
in use, the grid size was not the largest one and the 
mixed shape obstacle arrangement was considered. 

Figures 5 and 6 show the speed up achieved by 
the parallel algorithm based on both approaches. 

The figures show that, in most cases, the 
cooperative approach achieved a slightly higher 
speed-up. Nevertheless, for both approaches the 
speed up increases almost linearly with the number 
of processors when the sea of triangles obstacle 
arrangement is used. With this arrangement more 
computational work is available to be done and, as a 
consequence, better load balancing among a larger 
number of processors can be achieved. 
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Figure 5: Speed-up - No Communication Approach 

Figure 6: Speed-up - Cooperative Approach 

5 CONCLUSIONS AND FUTURE 
WORK 

Two approaches for the cooperative implementation 
of an algorithm for the construction of Voronoi 
diagrams which is suitable for use within a team of 
cooperative robots have been discussed in this paper. 
The first one does not require any communication 
among the robots. However, with this approach 
some redundant work is performed by the robots. 
The second approach requires some communication 
among the robots but implements a more 
cooperative strategy for the construction of the 
Voronoi diagram. 

Experiments performed on an Ethernet cluster of 
workstations have demonstrated that both 
approaches for the algorithm cooperative 
implementation scale well with the number of 
processors particularly when the number of 
obstacles is big. Nevertheless, the approach based on 
cooperation has produced slightly better results for 
two quite different obstacle arrangements and for 
different grid resolutions. With the achieved speed-
ups and running times, the parallel algorithm can be 
used in applications where the obstacle 
configuration changes with time within the robot 

team working area and, consequently, real time path 
re-planning is often needed. 

Future work will include the actual 
implementation and evaluation of the proposed 
parallel algorithm within a team of cooperative 
mobile robots under development in our laboratory 
(Lopes, 2001) (Aude, 2003). 
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