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Abstract: Nowadays, the computer vision community conducts an effort to produce canny systems able to tackle 
unconstrained environments. However, the information contained in images is so massive that fast and 
reliable knowledge extraction is impossible without restricting the range of expected meaningful signals. 
Inserting a priori knowledge on the operative “context” and adding expectations on object appearances are 
recognized today as a feasible solution to the problem. This paper attempts to define “context” in robotic 
vision by introducing a summarizing formalization of previous contributions by multiple authors. Starting 
from this formalization, we analyze one possible solution to introduce context-dependency in vision: an 
opportunistic switching strategy that selects the best fitted scenario among a set of pre-compiled 
configurations. We provide a theoretical framework for “context switching” named Context Commutation, 
grounded on Bayesian theory. Finally, we describe a sample application of the above ideas to improve video 
surveillance systems based on background subtraction methods. 

1 INTRODUCTION 

Computer vision was always considered a promising 
sensor for autonomous robots (e.g. domestic 
assistant robots, autonomous vehicles, video 
surveillance robotic systems, and outdoor robotics in 
general). Such applications require fast and reliable 
image processing to ensure real-time reaction to 
other agents around. Meanwhile, robots operating in 
varying and unpredictable environments need 
flexible perceptive systems able to cope with sudden 
context changes. To a certain extent, in robotics 
flexibility and robustness may be intended as 
synonyms. 

Conciliating real-time operation and flexibility is 
a major interest for the vision community today. 
Traditionally, flexibility has been tackled by 
increasing the complexity and variety of processing 

stages. Voting schemes and other data fusion 
methods have been widely experimented. Still, such 
methods often achieve flexibility at the expense of 
real time. 

Contextual information may open possibilities to 
improving system adaptability within real-time 
constraints. A priori information on the current 
world-state, scene geometry, object appearances, 
global dynamics, etc may support a concentration of 
system computational and analytical resources on 
meaningful components of images and video 
sequences. The recognition of the current operative 
“context” may allow a reconfiguration of internal 
parameters and active processing algorithms so as to 
maximize the potential of extractable information, 
meanwhile constraining the total computational 
load. Hence, “context” recognition and managing 
has attracted much interest from the robotic vision 
community in the last two decades. 
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A necessary step to implement context-
dependency in practical vision system is defining the 
notion of “context” in robotic vision. Various 
authors have covered different aspects of this matter. 
A summarizing operative definition may serve as an 
interesting contribution and a reference for future 
work. Furthermore, it helps in identifying possible 
“context changes” that a system should cope with. 

Overall, context managing represents a 
replacement of parallel image processing with less 
computationally expensive control. Controlling 
internal models and observational modalities by 
swapping among a finite set of pre-compiled 
configurations is probably the fastest and yet more 
realistically realizable solution. 

In Section 2, we present a wide range of works 
related to “context” in computer vision. Section 3 
details our proposal of formalization of such 
contributions by describing an operative definition. 
Then, Section 4 applies these concepts to a realistic 
implementation of real-time context-dependent 
adaptation within the scope of Bayesian theory. 
Finally, Section 5 concludes by suggesting some 
discussion and presenting future work.  

2 CONTEXT IN COMPUTER 
VISION 

In earlier works, contextual information referred to 
image morphology in pixel neighborhoods, both 
spatial and temporal. Methods integrating this 
information include Markov Random Fields (Dubes, 
1989), and probabilistic relaxation (Rosenfeld, 
1976). More recent works have moved the concept 
to embrace environmental and modeling aspects 
rather than raw signal morphology. General 
typologies of “context” definitions include: 
1. physical world models: mathematical 

description of geometry, photometry or 
radiometry, reflectance, etc – e.g. (Strat, 1993), 
(Merlo, 1988). 

2. temporal information: tracking, temporal 
filtering (e.g. Kalman), previous stable 
interpretations of images in a sequence, motion 
behavior of objects, etc – e.g. (Kittler, 1995), 
(Tissainayagam, 2003). 

3. site knowledge: specific location knowledge, 
geography, terrain morphology, topological 
maps, expectations on occurrence of objects 
and events, etc – e.g. (Coutelle, 1995), 
(Torralba, 2003).  

4. scene knowledge: scene-specific priors, 
illumination, accidental events (e.g. current 
weather, wind, shadows), obstacles in the 
viewfield, etc – e.g. (Strat, 1993). 

5. interpretative models and frames: object 
representations (3d-geometry-based, 
appearance-based), object databases, event 
databases, color models, etc – e.g. (Kruppa, 
2001). 

6. relations among agents and objects: 
geometrical relationships, possible actions on 
objects, relative motion, split-and-merge 
combinations, intentional vs. random event 
distinctions, etc – e.g. (Crowley, 2002). 

7. acquisition-device parameters: photo-
grammetric parameters (intrinsic and extrinsic), 
camera model, resolution, acquisition 
conditions, daylight/infrared images, date and 
time of day, etc – e.g. (Strat, 1993), (Shekhar, 
1996). 

8. observed variables: observed cues, local vs. 
global features, original image vs. transformed 
image analysis, etc – e.g. (Kittler, 1995). 

9. image understanding algorithms: observation 
processes, operator intrinsic characteristics, 
environmental specialization of individual 
algorithms, etc – e.g. (Horswill, 1995). 

10. intermediate processing results: image 
processing quality, algorithm reliability 
measures, system self-assessment, etc – e.g. 
(Draper, 1999), (Rimey, 1993), (Toyama, 
2000). 

11. task-related planning and control: observation 
tasks, global scene interpretation vs. 
specialized target or event detection, target 
tracking, prediction of scene evolution, etc – 
e.g. (Draper, 1999), (Strat, 1993). 

12. operation-related issues: computational time, 
response delay, hardware breakdown 
probabilities, etc – e.g. (Strat, 1993). 

13. classification and decision techniques: 
situation-dependent decision strategies, 
features and objects classifiers, decision trees, 
etc – e.g. (Roli, 2001). 

 
Despite definitions of “context” in machine 

vision have appeared under multiple forms, they all 
present “context” as an interpretation framework for 
perceptive inputs, grounding perception with 
expectation. 

Probably a definition of context in computer 
vision, yet rather a non-operative one, could be 
given by dividing a perceptive system into an 
invariant part and a variable part. The invariant 
part includes structure, behaviors and evolutions that 
are inherent to the system itself, and that are not 
subject to a possible change, substitution or control. 
Examples may be the system very hardware, 
acquisition sensors, and fixed links between them, 
etc.; basic sub-goals like survival; age, endemic 
breakdowns, mobility constraints, etc. The variable 
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part is all parameters, behaviors, and relations 
between components, which can be controlled. By 
means of these parts, the system may acquire 
dependence from the outer world and situation, with 
the purpose of better interacting with other agents 
and objects. In this view, context is what imposes 
changes to the variable part of a system. When 
mapped into the system through its variable parts, 
context becomes a particular configuration of 
internal parameters. 

3 AN OPERATIVE DEFINITION 
OF CONTEXT 

Inspired by the partial definitions from the previous 
references, we propose the following formalization 
(see (Lombardi, 2003) for details). 
 
Definition D.1: Context Q in computer vision is a 
triplet Q = (M, Z, D), where: 

• M is the model set of object classes in the 
environment; 

• Z is the operator set, i.e. the set of visual 
modules used in the observation process; 

• D is the decision policy to distinguish 
between different classes of objects. 

 
The rationale is that in perceptive systems, elements 
that can be parameterized and thus controlled are 
prior models of external objects, models of system 
components, and the relations among them. In short, 
D includes all prior assumptions on the strategy for 
inter-class separation and intra-class 
characterization. Essentially, it stands for point 13 in 
the above list. Hereafter, we further specify the 
definitions of M and Z. 

3.1 Model Set M  

The model set M contains all a priori knowledge of 
the system regarding the outer scene, object/agent 
appearances, and relations among objects, agents 
and events (essentially, points 1-6). We explicitly 
list three groups of knowledge inside M. 
Definition D.2: A model set is a triplet M = ({m}, 
P{m}, V{m}), where: 

• {m} is the entity knowledge describing their 
appearance; 

• P{m} is the prior expectation of occurrence 
in the scenario; 

• V{m} is the evolution functions describing 
the dynamics. 

 Entity knowledge m indicates the set of features 
and/or attributes that characterize an object type. 

Here, we call “entity” (Crowley, 2002) any object, 
agent, relation, or global scene configuration that is 
known, and thus recognizable, by the perceptive 
system. The set of all entity descriptions {m} is the 
total scene-interpretation capability of the system, 
namely the set of all available a priori models of 
object classes that the system can give semantics to 
raw data with. Minsky frames and state vectors 
containing geometrical information are examples of 
descriptors. Moreover, the image itself can be 
thought of as an object, thus {m} includes a 
description of global scene properties. 
Pm is the prior expectations on the presence of entity 
m in the scene. We distinguish Pm from m because 
object descriptions are inherently attached to an 
entity, while its probability of occurrence depends 
on causes external to objects. Evolution functions 
V{m} indicate the set of evolution dynamics of an 
entity state parameters, e.g. object motion models. 

3.2 Operator Set Z  

The operator set Z gathers all prior self-knowledge 
on the perceptive system, available algorithms and 
hardware, feature extraction and measurement 
methods, observation matrixes, etc (points 7-12). We 
explicitly list three descriptors in Z. 
 
Definition D.3: An operator set is a triplet Z = ({z}, 
H{z}, C{z}), where: 

• {z} is the operator knowledge describing 
their mechanisms; 

• H{z} are the operative assumptions of 
operators; 

• C{z} is the operation cost paid by system 
performance to run operators. 

 Operator knowledge z contains all parameters, 
extracted features, tractable elaboration noise, and 
other relevant features of a given visual operator. 
The set {z} spans all visual modules in a system and 
their relative connections and dependencies. 
Operators constitute a grammar that allows matching 
data and semantics (model set M). Set {z} includes 
logical operators, relation operators (e.g. detectors of 
couples), and events detectors.  
 Operative assumptions Hz is the set of hypotheses 
for the correct working of a visual module z. Implicit 
assumptions are present in almost every vision 
operator (Horswill, 1995). A misuse of z in 
situations where Hz do not hold true may cause 
abrupt performance degradation. Parameter Cz is a 
metrics depending on average performance ratings 
(e.g. computational time, delay, etc) useful to 
optimize system resources. 
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3.3 Contextual Changes  

The explicit formulation of D.1 allows for a deeper 
understanding of contextual adaptability problems 
and of “context changes”. 
 
Definition D.4: A context change is a change in any 
component of a context Q, and we write it with ∆Q = 
(∆{m}|| ∆P{m} || ∆V{m} || ∆{z} || ∆H{z} || ∆C{z} || ∆D), 
where || is a logical or. 
 Each component of ∆Q generates a class of 
adaptability problems analyzed in the literature 
under an application-specific definition of “context 
change”. Here follow some examples: 
a) ∆{m} may occur when i) the camera 

dramatically changes its point of view, ii) a 
perceptive system enters a completely different 
environment of which it lacks some object 
knowledge, iii) object description criteria 
become inappropriate. 

b) ∆P{m} means that the frequency of an entity 
class occurrence has changed, e.g. i) a camera 
enters a new geographical environment, ii) 
stochastic processes of object occurrence are 
non-stationary in time. 

c) ∆V{m} may occur when agents change 
trajectory so that hybrid tracking is needed – 
see (Tissainayagam, 2003), (Dessoude, 1993). 

d) ∆{z}may consist in i) inappropriate modeling 
of operator mechanisms, ii) inappropriate self-
assessment measures, etc. 

e) ∆H{z} indicates a failure of assumptions 
underlying {z}. For instance, a skin color 
detector whose color model is inappropriate to 
lighting conditions – see (Kruppa, 2001). 

f) ∆C{z} turns into a resource management 
problem. Dynamic programming, task 
planning, parametric control are examples of 
methods to find the best resource reallocation 
or sequencing. 

g) ∆D may occur when i) assumptions for 
separation of object classes become 
inappropriate, ii) critical observed feature 
become unavailable, iii). 

Definition D.5: The problem of insuring reliable 
system processing in presence of a context change is 
called an adaptability problem. 

4 BAYESIAN CONTEXT 
SWITCHING 

Two are the solutions to cope with context changes: 
i) a system has available alternative perceptive 
modalities; ii) a system can develop new perceptive 
modalities. The latter solution would involve on-line 
learning and trial-and-error strategies. Although 
some works have been presented – e.g. genetic 
programming of visual operators (Ebner, 1999) –, 
this approach is likely beyond the implementation 
level at present. 

The first solution may be implemented either by 
using “parallelism” or by “opportunistic switching” 
to a valid configuration. “Parallelism” consists in 
introducing redundancy and data fusion by means of 
alternative algorithms, so that failures of one 
procedure be balanced by others working correctly. 
However, parallelism is today often simulated on 
standard processors, with the inevitable effect of 
dramatically increasing the computational load at the 
expense of real time. This feature conflicts with the 
requirements of machine vision for robotics. 
“Opportunistic switching” consists in evaluating the 
applicability of a visual module or in pointing out a 
change in the environmental context, to commuting 
the system configuration accordingly. Opposite to 
parallelism and data fusion, this swapping strategy 
conciliates robustness and real time. Here we further 
develop the latter option (4.1), we describe a 
Bayesian implementation of it (4.2), and finally we 
exemplify an application to contextual video 
surveillance (4.3). 

4.1 Opportunistic Switching  

Opportunistic switching among a set of optimized 
configurations may ensure acceptable performance 
over a finite range N of pre-identified situations (i.e. 
“contexts”). 
Definition D.6: Designing a system for context-
dependent opportunistic switching consists in 
building and efficiently controlling a mapping ζ 
between a set of contexts Q and a set of sub-systems 
S, i.e. (1). The switching is triggered by context 
changes D.4. 
 
 ζ : Q(t) → S(t)         (1) 
 
 Building the map is an application-dependent 
engineering task: for each typical situation, the 
perceptive system must be engineered to deliver 
acceptable results. Control is performed by detecting 
.
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Figure 1: An oriented graph may easily accommodate all the elements of an opportunistic switching structure as defined in 

Section 3:  context/sub-system pairs in nodes, and events in arcs. Daemons trigger global state change. 
 
the current context Q(t), or equivalently by detecting 
context changes ∆Q. A context-adaptable system 
must be endowed with context-receptive processing, 
i.e. routines capable of classifying N different 
context states {q1, q2,... qN}. Essentially, such 
routines detect “context features”, and context 
recognition can be thought of as an object 
recognition task. The design of such routines 
appears to be an application-dependent design issue 
 
Definition D.7: Let us name daemon an algorithm or 
sensor δ exclusively dedicated to estimating context 
states q. 

 
Opportunistic switching has two advantageous 

features: i) flexibility and real-time, because multiple 
configurations run one at a time, and ii) software 
reuse, because an increased flexibility can be 
achieved by integrating current software with ad-hoc 
configurations for uncovered contexts. Assumptions 
for its use are: i) there exists a rigid (static) mapping 
from problems to solutions, ii) reliable context 
detection. 

4.2 Context Commutation  

The mapping ζ and its control may assume the form 
of parametric control, of knowledge-based algorithm 
selection, of neural network controlled systems, etc. 
Hereafter we present a Bayesian implementation of 
the opportunistic switching strategy, named Context 
Commutation (CC) (Lombardi, 2003). It is inspired 
by hybrid tracking –e.g. (Dessoude, 1993) –, where 
a swapping among multiple Kalman filters improves 
tracking of a target moving according to changing 
regimes. 

Context Commutation represents context 
switching by means of a Hidden Markov Model –

e.g. (Rabiner, 1989) –, where the hidden process is 
context evolution in time, and the stochastic 
observation function is provided by appropriate 
probabilistic sensor models of daemons. Time is 
ruled by a discrete clock t. Each clock step 
corresponds to a new processed frame. 

 
Definition D.8: Context Commutation represents 
context evolution by means of a discrete, first-order 
HMM with the following components (Figure 1): 
1. A set of states Q = {q1, q2, ...qN }. Each state qi 

corresponds to a context and gets an associated 
optimized system configuration si. For every i, si 
is such that the perceptive system works 
satisfactorily in qi = {Mi, Zi, Di} i.e. Mi, Zi, Di are 
the appropriate models, operators and decision 
policies in the i-th situation. 

2. An observation feature space Φ composed of 
daemon outputs φ. If there are K daemons, φ is a 
K-dimensional vector. 

3. A transition matrix E, where elements Eij 
correspond to the a priori probability of 
transition from qi to qj, i.e. (2). 

 
 Eij = P[eij] = P[Q(t) = qj | Q(t-1) = qi]   (2) 
 
4. An observation probability distribution bi(φ) for 

each context qi, defined in (3). Thus, the N 
different bi(φ) define the global daemon sensor 
model of Bayesian signal analysis theory. 

 
      (3) ))(|)(()( ii qtQtPb ==Φ= ϕϕ
 
5. An initial state distribution function π = {π1, π2, 

...πN}, where πi ∈ [0, 1] for i = 1, 2, ...N, and (4) 
holds true. 

 
             (4) ∑
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 (a)   (b)   (c) 
 

 (d)  (e)  (f) 
Figure 2: When a reliable background reference model is available (a), background subtraction methods deliver more 

meaningful motion information (b) than simple frame differencing (c). However, if the lighting conditions suddenly change, 
e.g. an artificial light is turned off (d), BS fails (e) while FD still works properly. 

 

 
Figure 3: The simple CC system for “light switch” problems has two states and one daemon. The picture shows the 

transition matrix E used in the experiments (top left), and a representation of daemon models (next to the si boxes). 
 

6. The current context qν is estimated by the 
Maximum A Posteriori on Ψ(t) (5), (6). 

 
 Ψ(t) = (P(q1), P(q2), …P(qN))      (5) 
 

ν = argmaxi [Ψ i(t)]         (6) 

4.3 A practical implementation  

As a final illustration, we demonstrate an application 
of Context Commutation to tackle the “light switch” 
problem affecting background subtraction (BS) for 
motion detection in automatic video surveillance. In 
indoor environments, when artificial lights are 
turned on or off, the reference background model 
used in BS looses validity in one frame-time. 
Modern time-adaptive background systems 
(Stauffer, 1999) usually take around 10÷100 frames 
to recover. An alternative solution involves the use 
of a second algorithm that degrades less its 
performance in case of abruptly changing lighting 
conditions. For instance, frame differencing (FD) 
algorithms deliver motion information like BS does, 

and they recover from “light switch” just after 1 
frame (Figure 2). 

A context-adaptable system based on 
opportunistic switching would feature two system 
states: i) using BS when appropriate, ii) using FD 
otherwise. In the general case, BS delivers a more 
informing motion map than FD. However, when 
lighting conditions are unstable, the system swaps to 
FD – which recovers more quickly. 
 Here, we design a CC system as shown in Table 1 
and Figure 3. The two contexts, corresponding to 
“stable” and “unstable” global lighting, cope with a 
context change ∆Hbs which corresponds to a failure 
of a basic operative assumption founding BS’s 
correct working – i.e. stable lighting –. The daemon 
δ1 apt to detecting ∆Hbs is modeled with two 
truncated Gaussians of the kind shown in Figure 3, 
with parameters tuned by training. Daemon δ1 
counts the pixels na and nb showing a luminance 
change that breaks thresholds θδ1 and -θδ1, 
respectively: na+nb represents all pixels showing 
substantial luminance change. The output (7) is then 
a measure of the luminance unbalance over the last 
two images. In stable lighting conditions φ1 would 
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q1 q2

s(1)

0 1

0 1
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lighting 
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be 0. The closer φ1 to 1, the more likely switched the 
light. 
 

 
1

),max(
21 −

+
=

ba

ba

nn
nn

ϕ
        (7) 

 
Table 1 

Q Situation S 
q1 stable lighting BS active if in ready state 

FD active if BS in recovering state 
q2 unstable 

lighting 
FD active 

 
To assess context estimation performance, δ1 was 

tested on over 1500 images containing about 50 light 
switches. The test was done on sequences indexed 
by a human operator. Figure 4 shows the results on 
one test sequence: when the confidence rating breaks 
0.5, q2 is estimated. Bold dots on the top line show 
the ground truth for q2 occurrence. Model 
parameters Gi~(µi, σi) in qi are in Table 2. 

 
 

Table 2 
 µ1 µ2 σ1 σ2
δ1 0.09 0.71 0.17 0.36 

 
We measured an average correct estimation rate 

of 0.95. The percentage goes up to 0.98 if a 3-frame-
range error is allowed in locating the contextual 
switch. In effect, this error allowance accounts for 
human mistakes in indexing the test videos. 

The motion detection system with and without 
CC was tested on several sequences. No tracking 
was performed, only motion detection. The graph of 
Figure 5 shows the improvement provided by CC in 
terms of such distance (when BS failed because of 
inappropriate background model – e.g. Figure 2 –, 
the corresponding estimation error was set to 100). 
Figure 6 shows some results for one sequence where 
light switches twice: on-off on frame 327, and off-on 
on frame 713. The distance of the barycentre of 
motion between automatic detection and human 
labeling was computed for BS only, and for BS/FD 
combined by means of CC.  
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Figures 4, 5: Probability that the current context state be q2 as estimated by δ1 in a test sequence (left). Improvement in 

the estimation error provided by context switching (CC) with respect to BS alone (right). 
 

 
 

 
 
Figure 5: Frames no. 322, 332, 702, and 932 from a test sequence: original images (first row), motion detection by BS 

and FD managed opportunistically by CC (second row). 
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5 CONCLUSIONS 

In this paper we foster deeper studies in the 
management of contextual information in robotic 
vision. In the first part, we proposed an operative 
definition of “context” to identify the variable parts 
of a perceptive system susceptible of becoming 
inappropriate in case of contextual changes: models, 
operators, and decision policies. 
 In the second part, we described a novel Bayesian 
framework (i.e. Context Commutation) to implement 
contextual opportunistic switching. Dedicated 
algorithms, called daemons, observe some 
environmental features showing a correlation with 
system performance ratings rather than with the 
target signal (e.g. people tracking). When such 
features change, the system commutes its state to a 
more reliable configuration. 
 Critical points in Context Commutation are 
mainly related to its Bayesian framework. 
Parameters like sensor models of daemons and 
coefficients of the transition matrix need thorough 
tuning and massive training data. An error in such 
parameters would corrupt correct contextual 
switching. 

Possible points for future work are: i) exploring 
switching reliability with incorrect parameters, ii) 
studying Context Commutation with more than eight 
states, iii) extending the framework to perceptive 
systems including sensors other than solely vision. 
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