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Abstract: Asynchronous communication mechanisms (ACMs) are potentially useful in systems with heterogeneous 
timing as data connectors between processes belonging to different timing domains. In distributed, 
concurrent and embedded digital systems, there is often a desire to have some temporal decoupling between 
different parts of a system. ACMs provide a means with which concurrent processes can communicate with 
one another and yet still avoid synchronization. This paper describes efforts to implement MATLAB-based 
models of existing ACM algorithms. These techniques will facilitate the inclusion of ACMs in such 
application fields as distributed control and signal processing systems.  

1 INTRODUCTION 

Inter-process asynchrony is inevitable for 
computation networks in the future, firstly because 
different and diverse functional elements, especially 
those connecting to analogue domains, tend to have 
different timing requirements (Kelly et al 2003, 
Simpson 2003), and secondly because concurrent 
and distributed system implementations lead to 
greater asynchrony between components as 
semiconductor technology advances and the degree 
of integration increases (ITRS 2003 “Design” 
document emphasizes multiple clock domains and 
source-synchronous signalling and predicts networks 
of self-timed blocks). The size of computation 
networks is becoming larger, and the traffic between 
the processing elements is increasing. Handling the 
data communications which make up the traffic, 
therefore, may determine much of the performance 
and characteristics of such systems.  

In truly distributed systems such as sensor 
networks (Kelly et al 2003, Min et al 2001)[1, 4], 
there is often a desire to have temporal decoupling 
of various kinds between digital processes. For 
instance, parts of a distributed control system may 
consist of control laws mapped onto hardware 
embedded into parts of the plant environment, whilst 
the higher hierarchies of the system may be 
implemented with software running in general 
purpose processors which are shared multitasking 
units. It can be very important to have temporal 
decoupling between these two parts of the control 
algorithm at the hardware level because of such 
reasons as avoiding deadlock propagation through 

the system, the desire to have low power 
characteristics in remote and battery powered units, 
the physical impossibility of keeping everything 
synchronized in distributed systems, different parts 
of a system requiring radically different processing 
speeds, etc. 

Asynchronous communication mechanisms 
(ACMs) have been investigated since the 1980s and 
have by now developed into a coherent field 
including classification, specification, and 
techniques for implementation, analysis and 
verification (Simpson 2003, Xia et al 2002). ACMs 
are potentially useful in systems with heterogeneous 
timing as data connectors between processes 
belonging to different timing domains, which may 
exist either out of necessity or desirability. They can 
also be useful as digital mimics for various types of 
data connections in analogue systems, with different 
types of ACMs suiting different data requirements. 
ACM classification was successfully expanded to 
include types providing more qualitative asynchrony 
and richer data properties than the traditional FIFO 
buffer. This made it clear that these applications can 
be envisaged. The successful work in synthesis and 
verification of implementations made them practical 
(Simpson 2003, Xia et al 2002).  

An ACM, as defined here, is a connector 
between two asynchronous processes, a writer and a 
reader, through which a sequence of data items can 
be passed (Simpson 2003, Xia et al 2002) [2, 5]. The 
general scheme of these kinds of data 
communication mechanisms is shown in Figure 1. 
Most ACM implementations tend to include shared 
memory, accessible to both writer and reader, for the 
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data being transferred, and control variables, each of 
which is usually set by one side and read by the 
other.  

ACMs emphasize the asynchrony between the 
reader and writer processes during data transfer, and 
are therefore especially suitable for systems of the 
future where multiple time domains not fully 
synchronized with one another predominate. ACMs 
can be classified into four types according to the 
qualitative properties of the inter-process 
asynchrony during data transfer as shown in Table 1.  

When discussing ACMs, we assume that the data 
being transferred consists of a stream of items of the 
same type, and the writer and reader processes are 
single-thread loops, during each cycle of which a 
single item of data is transferred to or from the 
ACM.  

Table 1: ACM classification 
 NRR RR 

NOW BB RR-BB 
OW OW-BB OW-RR-BB 

In Table 1, which follows the tradition of 2x2 
matrix classification schemes found in (Simpson 
2003, Xia et al 2002), NRR and RR stand for non-
rereading and rereading, while NOW and OW mean 
non-overwriting and overwriting. Whether rereading 
is permitted determines if the reader may be held up 
waiting for new data to appear in the ACM. Whether 
overwriting is permitted determines if the writer may 
be held up waiting for previous data in the ACM to 
be accessed by the reader. Therefore, a BB or 
bounded buffer without overwriting and rereading 
provisions, which includes most traditional inter-
process data buffering schemes, may require either 
process to wait under certain circumstances. An RR-
BB may require the writer to wait when previous 
data items have not been read. An OW-BB may 
require the reader to wait when no newer data has 
been made available by the writer after the previous 

read. An OW-RR-BB, however, does not require 
either side to wait under any circumstances.  

The study of ACMs so far, though extensive, has 
not extended to their direct modelling in application-
level tools. Previous proposals for modelling ACMs 
at a higher level, treating them as components in 
larger systems, have employed Petri nets (Xia 2000). 
This was suitable for the case where systems 
containing ACMs can be regarded and analysed as 
general discrete event digital systems. However, in 
order to study the effect of including ACMs in such 
engineering application systems as control systems, 
especially when analogue parts are present, ACM 
models need to be integrated into popular 
application-level tools such as MATLAB. 

2 STATEFLOW MODELS OF 
ACMS 

MATLAB is a widely used modelling, simulation 
and analysis tool for engineering application systems 
in such fields as control, signal processing, large 
scale hybrid systems with analogue and discrete 
parts, etc. It also includes a Stateflow facility with 
which discrete state-transition subsystems such as 
ACMs can be modelled. In order to broaden the 
application space of ACMs, we have developed a 
method to model and simulate ACMs using 
MATLAB, based on Stateflow. The two examples in 
this section illustrate the method with RR-BB 
algorithms. 

2.1 Represent Handshake in the 
Stateflow Model 

The progress of ACM algorithms can be controlled 
by the writer and reader processes via request-
acknowledgement handshakes. A four phase 
handshake protocol follows this order: sending a 
request, waiting for the acknowledgement sent from 
the other side, releasing (resetting) the request, and 
resetting the acknowledgement from the other side.  

This can be modelled in Stateflow as shown in 
Figure 2. One handshake cycle is represented in the 
following way: a request is generated in the state 
entry actions (the “En” statements), which are 
executed when entering the state; the state itself 
represents waiting for the acknowledgement in the 
transition conditions (the conditions in the square 
brackets, in the case of Figure 2, ACK becoming 1), 
which lead to the exit from the state (end of waiting) 
and executions of the transitions; on exiting a state, 
the requests are released (in the “Ex” statements); 
and then the acknowledgements can be reset. 

ReaderWriter 

Shared 
memory 

Control 
variables 

ACM 

data data 

Figure 1: ACM with shared memory and possibly 
control variables 
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We built the Stateflow models of ACMs. based 
on this representation of the handshake protocol.  

2.2 Global View of RR-BB ACM 

A Bounded Buffer (BB) ACM can be implemented 
with a ring structure formed by identical memory 
cells (see Figure 4). One cell stores one data item at 
a time. The cells can be added or removed to change 
the size of the buffer. The two arrows in the figure 
indicate the reader pointer and the writer pointer. 
Each pointer points to the cell which is being 
accessed by its corresponding process. After the 
completion of a data access, the reader and writer 
pointers are moved forward according to the specific 
algorithm. 

If the writer cycle is much longer than that of the 
reader, its pointer may point to the cell immediately 
ahead of the reader pointer. In this case the buffer is 
empty, i.e. all the data items in the buffer have 
already been read by the reader. Conversely, if the 
writer cycle is much shorter than the reader cycle, its 
pointer will likely point to the cell just behind the 
reader pointer. The buffer is full in this case and 
none of the data items in the buffer have been read 
by the reader. 

Rereading, if permitted, only occurs when the 

buffer is empty with a new read request arriving. 
Overwriting, if permitted, only happens when the 
buffer is full with a new write request coming. 

B 
En:req2=1; 
Ex:req2=0;

A 
En:req1=1; 
Ex:req1=0; 

[ACK1==1] 

The RR-BB ACM allows rereading but not 
overwriting. A multi-cell RR-BB algorithm is 
described in Figure 3. 

Figure 3: Handshake protocol in Stateflow 

Here n is the number of free cells which are not 
occupied by the pointers w and r. Therefore for this 
algorithm, n+2 is the total number of the memory 
cells in the ring. 

The algorithm can be implemented based on the 
handshake protocol. For instance, each cycle of the 
writer part of the algorithm can be connected to the 
external writer process through a handshake during 
each cycle of operation (i.e. request from writer 
process to start wr, acknowledged by the writer part 
of the algorithm at the end of w0). This also applies 
to the reader side. The relationships between 
statements rd and wr and the cell memory can also 
be modelled as such handshakes. Both the writer and 
reader algorithm cycles have wait states from which 
they emerge only when the condition is correct 
(external request arrives and additionally in the 
writer’s case, r becoming different from w).  

Cell

Cell Cell 

Cell 

Cell Cell 

Cell 

…Cell 

Figure 5 shows the Stateflow model for the 
algorithm in Figure 3. In the writer, the wr statement 
is matched to the writing state because it handshakes 
with the shared memory. The w0 statement, which 
updates w, is mapped to the transition action after 
the writing state. After updating w, the write cycle is 
completed and the done state handshakes with the 
environment. The ww statement is merged into the 
idle state, which represents waiting for the next 
cycle request from the external writer, because it is 
also conditional waiting. The two wait conditions 
are “AND-ed” to produce the equivalent result. 

Figure 4: Ring organization of ACM buffer 

In the reader, what r0 does is modelled in the 
transition actions before the reading state. The rd 
statement is mapped to the reading state because of 
the handshake. A done state follows reading to 
acknowledge to the environment the completion of 

var w: 0..n+1; r: 0..n+1; initialized sensibly (e.g.
r=w-1) and initialize data in the cells. 

Writer Reader 
wr:write cell w; r0:if (r+1 mod n+1)≠w  
w0:w:=(w+1 mod n+1);  then r:=(r+1 mod n+1); 

 

ww:wait until r≠w; rd: read cell r; 

Figure 5: Stateflow Model for Algorithm in Figure 2

Figure 2: n+2 Cells RR-BB ACM algorithm
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the read cycle. An idle state is added at the end to 
wait for the next request. 

The initial state in the writer part is w_idle. The 
writer will not become active until the write request 
(the request signal from the external writer wishing 
to start a write data access – statement wr) comes 
and w is not the same as r. When the writer becomes 
active, a write_start signal is sent to the cells, in 
order to write the new data item to the corresponding 
cell. When the writer receives a write_done signal 
from the buffer, indicating the completion of wr, it 
will change w to point to the next cell. Because of 
the ring configuration, the writer needs to check if 
the current cell is the one with the highest index. If it 
is, w will be set to 0, which is the cell with the 
lowest index. Otherwise, the value w will simply be 
incremented. After that, a write_ack is sent back to 
the environment. Then the writer will wait for the 
resetting of the write_req signal before going back to 
the w_idle state.  

The reader is similar to the writer. The initial state 
is r_idle. When a read request comes from the 

environment, the reader will check if the next cell is 
occupied by the writer or not. The same r+1 mod n+1 
exercise is carried out to determine the index of the 
next cell (either r+1 or 0). If the next cell is occupied 
by the writer, the reader pointer will remain at the 
current cell (for rereading). If not, the reader pointer 
will be moved forward according to the r+1 mod n+1 
rule. Then the reader sends a read_start signal to the 
buffer in order to read the data item in the 
corresponding cell. On completion of reading, the 
reader will receive a read_done signal from the cells. A 
read_ack is sent to the environment, and then the active 
state moves to the r_idle state waiting for the next 
read_req signal. 

This Stateflow model can be plugged into the 
Simulink environment. This is shown in Figure 7. 

The test environment generates write requests, read 
requests and the input data items. The data path is 
made of memory slots (one slot per cell) to which the 
data items are written in and from which the data items 
are read out. 

This ACM was simulated in this environment, with 
resulting waveforms shown in Figure 6. Rereading 
occurred when read requests came without new data 
items available, as in the case after the data items 4 and 
5 were read (encircled in the diagram). In this 
simulation, n was set to 1, i.e. the total number of cells 
was 3. Therefore, the writer waited if two consecutive 
data items have not been read, as in the case after items 
3 and 8 were written (encircled in the diagram). 

Wack
W_Mu
Rack
R_Mu

Wreq

Data

Rreq

Test Environment

Scope

1

Number

Memory1

Memory

Datain
Write_start
Read_start
W
R

DataOut

Write_done

Read_done
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write_req

read_req
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w

r

write_ack

read_ack

Control Circuit

-C-

Constant1

-C-

Constant

Output DataWrite request
Write request

Input data Read request
Read request

The algorithm in Figure 3, though neat and easily 
understandable, is not suitable for hardware 
implementation. In particular, the integer control 
variables w and r will need many protections in order 
to be considered atomic. The global view nature of the 
indexing also means that the actual setting and reading 

Figure 6: The Model in Figure 5 with Test Environment
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Figure 7: Simulation Waveforms for Figure 6
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of these variables will include multiplexing and de-
multiplexing on a scale depending on the number n. 
The fork and join operations needed mean that an 
implementation of n+3 cells, for instance, cannot be 
easily built upon one of n+2 cells. 

2.3 Modular Design Model 

The cellular structure of this kind of buffered ACMs 
suggests that it may be possible to construct a 
standard individual cell, complete with its own local 
control variables, then use n of these for an n-cell 
solution. This modular design approach is much 
better suited for hardware implementations. 

A localized algorithm for a single cell is 
described in Figure 9. 

The action “advancing to next cell” causes the 
end of execution of the current cell’s writer/reader 
algorithm and the beginning of the next cell’s one 
from wr/r0. The reader algorithm loops at the same 
cell until the condition wnext=0 is met. The writer 
will wait at a cell until the condition rnext=0 is met. 
Note that the writer algorithm sets both w and wnext 
and reads rnext, and the reader algorithm sets both r 
and rnext and reads wnext. 

Because of the existence of the action “advance 
to next”, one more handshake is in the writer/reader 
in addition to the two mentioned in the previous 
algorithm. After the writer/reader has advanced to 
the next cell, the current one enters an idle state, and 
it cannot respond to external requests until the 
current w/r is set again (the process completing a 
cycle of the ring). This needs to be dealt with using 
an additional state in the model. 

Figure 8 shows the Stateflow model of the 

algorithm in Figure 9. In the writer part, the wr and 
w0 statements were represented in Stateflow in the 
same way as in Figure 3. After the w_done state, a 
wait state is used to represent the ww statement, 
instead of being merged into the following state. The 
reasons of doing that are: 1) releasing the write 
request is the only condition of finishing a write 
cycle; 2) the only prerequisite of advance is r in the 
next cell having been reset. These two conditions 
cannot be combined together. The next statement wa 
was mapped to the w_adv state. w_idle and w_ready 
represented the two different states mentioned 
before. 

var w: 0..1; r: 0..1; initialized sensibly (one cell 
has w=1 and one has r=1, all others being 0) and 
initialize data in the cells. 

Writer Reader 
wr: write; r0: if wnext=0 then 
w0: w:=0; wnext:=1;  begin r:=0; rnext:=1; 
ww: wait until 
rnext=0; 

advance to next end 

wa: advance to next; rd: read; 

Figure 9: Modular Design RR-BB ACM Algorithm 
Figure 8: Stateflow model of the algorithm in Figure 9

The reader part consists of the three handshake 
states, the idle and the ready state. 

The model worked as follows: when the write 
pointer points to the current cell (and with current 
w=1) and a write request comes, the writer writes the 
input data item into the memory of the cell. After 
that, w is reset to 0 and wnext set to 1. At this point, 
the write cycle is finished, a write acknowledgement 
is sent back to the environment. However, the writer 
pointer will not move to the next cell until rnext 
becomes 0. 

When a read request comes, the reader firstly 
checks if the next cell is occupied by the writer or 
not (if wnext is 1 or not). If it is not, it moves the 
pointer to the next cell and does the reading. 
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otherwise, it stays the current cell and rereads its data 
item. 

The ready states in the Stateflow are used to 
initialise the position of the pointers. If the pointer 
moves to the current cell, the system is in the ready 
state, otherwise, it is in the idle state.  

Consider the control flow from w_ready state to 
w_done state in the writer: After releasing the 
acknowledgement, the writer does not send the advance 
request until r_nxt = 0 (next cell is no longer accessed 
by the reader). When the writer receives the w-setting 
acknowledgement from the next cell, it releases the 
request, moves to the idle state, and waits for the 
advance request from the previous cell. 

When a read request comes to the current cell, the 
reader sends an advance request to the next cell if it is 
no longer accessed by the writer (w_nxt is not 1), and 
goes to the idle state when r in the next cell is set. At 
the same time, the next cell moves the active state from 
idle to reading. After finishing reading, the reader 
sends an acknowledgement and goes back to the ready 
state.  

The Simulink model showing connections between 
cells is in Figure 10. Figure 11 shows the simulation 
results for the model in Figure 10. Rereading occurred 
after data items 1, 2, 3 were read, and writer waiting 
happened after data items 9, 12 were written. These 
correspond with the properties specified for the RR-BB 
ACM. 

RR BB Single

1
Constant3

0
Constant2

-C-
Constant1

-C-
Constant

Figure 10: Modular 3 Cell RR-BB ACM Simulink model
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Figure 11: Simulation of the RR-BB ACM model in Figure 10
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3 A MOTOR CONTROL SYSTEM 
WITH ACM 

Here we use an example application system case 
study to demonstrate the usefulness of these kinds of 
ACM models.  

Figure 12 shows the basic structure of a 
distributed motor control system found in (Kappos et 
al 1990). The vC and iC blocks are the velocity and 
current/torque controllers, both integrated into the 
same ASIC in (Kappos et al 1990). The velocity and 
current control laws are implemented digitally.  

Because of the different speed requirements (the 
inner loop requiring considerably faster control 
actions than the outer one), the digital parts of the 
ASIC controller were implemented in a dual-speed 
fashion. The link between vC and iC is in effect 
implemented as an analogue connection, with the 
digital output from vC first converted into analogue 
then re-sampled to provide the input for iC.  

This kind of temporal decoupling is essential in 
these kinds of distributed systems. In motor control 
systems especially, if the inner and outer loops are 
not temporally decoupled, potential digital hazards 
such as deadlocks can propagate through from one 
loop to another. The function of the inner control 
loop is normally safety-critical, because even 
temporary failure there could have catastrophic 
effects such as causing the power electronic 
elements or fuses to fail. If such a motor is used in a 
safety-critical application (for instance in an 
aeroplane fuel pump), such failures which cannot be 
recovered on-line must always be avoided. As a 
result, the capability of the inner loop to continue 
functioning even when the outer loop has stopped 
working is of vital importance. This means that even 
though both vC and iC may be integrated into the 
same piece of silicon, they must in reality be 
temporally independent of each other. 

Because of the difference in speed requirements 
for the vC and iC parts, assuming the same 
technology is being used to implement them in 
hardware, the part of the hardware where vC is 
implemented could have large amounts of excess 
computational capacity. This makes it attractive to 
attempt to make use of this capacity for other tasks, 
i.e. to effectively implement the vC part as one of 

the threads in a multi-tasking processing element. 
This makes it possible for its progress to be affected 
by other factors outside the immediate control 
system boundary. Well-implemented operating 
systems such as real-time kernels may take care of 
the safety-critical implications of such complications 
by ensuring that critical threads do not wait for 
information from other threads. 

At the basic hardware level of the data 
connection between the iC and vC parts of an 
embedded hard-wired controller chip, this kind of 
non-blocking communication can be implemented 
by using an analogue link. However, this implies an 
analogue/digital hybrid chip.   

- - 
M iC vC 

θd 

θ 
i 

With ACMs, the same kind of temporal 
decoupling can be realized without resorting to 
inserting an analogue wire between two digital 
devices. The OW-RR-BB type ACMs, especially, 
mimics this function of an analogue wire perfectly. 
When an OW-RR-BB is “full”, the writer overwrites 
one of the items in it instead of waiting for a space 
to appear, and when it is “empty” the reader rereads 
the item it read during the previous cycle instead of 
waiting for a new item to appear. This is 
functionally the same as connecting the writer with 
the reader through a D/A and A/D converter pair, 
assuming perfect level-matching in the converters. 

Figure 12 Schematic of dual-loop motor control system

We have implemented a Stateflow OW-RR-BB 
ACM model using the techniques outlined in the 
previous section. It was then inserted into a 
MATLAB model of the system in Figure 12.  

Figure 13 shows the way in which an OW-RR-
BB ACM was used to connect the fast and slow 
controllers in the motor control system. The iC part 
of the control law has a sampling frequency of 30 
kHz and the vC part of the control law has a 
sampling frequency of 1 kHz. Our simulations with 
a single-cell OW-RR-BB ACM show that the reader 
part of the ACM reads each data item approximately 
30 times, as expected, and overwriting rarely 
occurred. Some artificial perturbations were put into 
the frequencies of the clock signals going into both 
the vC and iC parts as a form of noise. 

 
iC – fast ACM 

i feedback

vC – slow

Figure 13: ACM connecting fast and slow circuits

The simulation results were compared with 
results from simulating an entirely analogue version 
of the same system. There were no detectable 
differences from the output waveforms of both θ and 
i. This is expected because an OW-RR-BB ACM is 
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the digital emulation of direct analogue connection, 
if the latency/delay associated with the buffering can 
be neglected. It behaves the same as a D/A → 
perfect analogue connection with delay → A/D 
combination in this case. Because of the vastly faster 
inner loop the latency caused by the buffering 
associated with the single cell in the ACM is 
unimportant. 

4 SUMMARY AND FUTURE 
WORK 

We have developed a series of techniques with 
which MATLAB/Simulink models can be 
implemented for ACM algorithms. Initial simulation 
results show that these models perform as expected, 
i.e. the same as predicted theoretically from the 
algorithms.  

An initial case study successfully demonstrated 
that these kinds of ACM models can be plugged into 
MATLAB models of control systems for the purpose 
of simulation.  

MATLAB direct to hardware fast prototyping 
tools are becoming available (Xilinx), potentially 
making it possible to save the step of implementing 
DSP hardware through the traditional VLSI process. 
Future developments in this direction could 
potentially lead to the direct hardware 
implementation of application systems containing 
ACMs designed and verified in MATLAB. This 
provides another motivation for this kind of work.  

Future work includes the further development of 
MATLAB/Simulink models for non-ACM 
components which would highlight the effect of the 
various degrees of temporal decoupling ACMs bring 
to systems.  
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