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Abstract: In this paper existing classical and advanced techniques of active acoustic noise cancellation (ANC) in ducts 
are collected and compared. The laboratory plant used in experience showed a linear behaviour and so the 
advanced techniques were not used. Due to delay on the plant, the feedback classical techniques could not 
be applied. The best results were obtained with the modified filtered-reference LMS (MFX-LMS) and 
filtered-u techniques. A very important conclusion is that the quadratic normalisation is needed to maintain 
the algorithms always stable. In this paper 18dB of attenuation of white noise and 35 dB of attenuation of 
tonal noise were achieved. Thus, ANC can be applied in a real situation resulting in important noise 
attenuations. 

1 INTRODUCTION 

Acoustic noise is since a long time considered as 
pollution due to the diverse problems that it causes in 
the human being, both physical, as for instance 
deafness, and psychological. As a consequence, 
competent authorities tend to enforce restrictive laws 
on the allowed sound levels, and it is thus necessary 
to look for solutions leading to its fulfilment. On the 
other hand, acoustic noise is a cause of lack of 
productivity. By these reasons, there is a pressing 
need to solve the problem of acoustic noise.  

In practice passive solutions for the cancellation 
of acoustic noise can be found by simple use of 
absorption and reflection phenomena. However, they 
are of little use for frequencies below 1000Hz. In 
these other cases acoustic noise cancellation (ANC) 
based on the principle of interference, should be 
used.  

The idea of the ANC is 70 years old. One of the 
first references remounts to 1934 when P. Lueg 
patented some ideas on the subject (Elliot, 2001 and 
Tokhi et al., 1992). Lueg addressed ANC in ducts 
and in the three-dimensional space. For ducts, Lueg 
considered a microphone that captured the acoustic 
noise. The signal from the microphone would pass 
through the controller and feed the loudspeaker as 
shown in fig. 1. The controller would result in 
acoustic waves emitted by the loudspeaker with the 

same amplitude of the acoustic noise but in phase 
opposition, so that the two waves would cancel each 
other (interference principle). This configuration is 
nowadays the most used in ANC applications in 
ducts. 
 

Controller
Loudspeaker

Figure 1: Single-channel feedforward control in a duct. 
 

The purpose of using ANC in ducts is to cancel 
the plane waves that are propagated in the duct due to 
fans, like in an air conditioner installation. The ANC 
mostly used techniques were developed to control 
stochastic disturbances, because acoustic noise can 
be considered as a disturbance with significant 
spectral richness. Furthermore, techniques for 
stochastic disturbances can be applied in 
deterministic disturbances but the inverse is not 
feasible. ANC techniques for stochastic disturbances 
can be divided into two main groups: classical or 
advanced. Those of the first group are based on plant 
linearity, and consequent validity of the superposition 
principle (Ogata, 1997). 

Linear techniques can also be applied to 
nonlinear systems, but they usually have bad 
performance. Advanced techniques were developed 
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to nonlinear plants, although they can be applied to 
linear systems with good performance. However, 
they are also more complex and demand more 
computational power than the classic ones. For that 
reason advanced techniques are not preferred instead 
of classic ones when linear plants are concerned. 

Both classic and advanced techniques can be 
divided according to the type of control: feedforward 
or feedback. In the feedforward control information 
is collected in advance about the disturbance and so 
the controller can act in anticipation; while the 
feedback control has no information in advance 
about the disturbance and thus the controller reacts to 
the disturbance. The feedback control is useful when 
the acoustic noise is created by several different 
sources, or by distributed sources, or when it is not 
practical or possible to get information in advance 
concerning all the noise sources. However, this is not 
the case of ducts because the noise source is well 
defined and acoustic waves are plane and travel in a 
single direction.  

In this paper existing feedforward techniques for 
ANC in ducts are compared to assess the 
performance of these techniques in a real situation. 

In ducts it is possible to have only plane acoustic 
waves, rending ANC much simpler since some 
acoustic effects are not to be found, as for instance 
the diffraction of acoustic waves. In this work the 
range of frequencies to be deal with ANC is limited 
to the interval [200 Hz; 1000 Hz] since ANC is not 
effective for frequencies above 1000 Hz and the 
actual set-up used does not allow to go below 200 
Hz. 

Digital Controller
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Figure 2: Block diagram of feedforward control. 

2 FEEDFORWARD CONTROL 

The general block diagram of the feedforward 
control of acoustic plane waves in a duct is found in 
fig. 2. The signal x(n) is the reference signal 
measured by the reference microphone, d(n) is the 
primary noise signal passed through the primary 
path, e(n) is the error signal given by the error 
microphone, and Gs(z) is the secondary path between 
the secondary source and the error sensor. It is 
assumed that the controller is digitally implemented 
and made up by a direct filter W(z) and a feedback 
filter Ĝf(z). The feedback filter consists of an 

estimation of the natural feedback path of the system 
Gf(z), i.e., reproduces the influence of the secondary 
source to the reference sensor. When Ĝf(z) = Gf(z), 
the two feedback loops cancel each other and the 
signal that feeds the controller is equal to x(n). In this 
situation the control is purely feedforward. In the 
situation in which the estimate of Gf(z) is not perfect, 
a residue appears from the cancellation of two loops. 
If Ĝf(z) is a good estimate of the path Gf(z), the 
residue has a small value and will not affect the 
performance of the control. If the estimate of Gf(z) is 
poor, this can influence the performance of the 
control, that may become unstable. In this situation it 
might be necessary to use feedback control 
techniques to improve the performance or to stabilize 
the control (Elliot, 2001). 

Assuming that the two feedback loops cancel 
each other completely and that the plants are linear 
and time invariant (LTI), so that the filter W(z) and 
the discrete transfer function Gs(z) can be 
interchanged, the error signal e(n) comes 
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where w is a vector with the coefficients of the filter 
and r(n) the vector with the last samples of the 
iltered reference signal r(n) given by: f
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where the gi are the I coefficients of the discrete 
transfer function Gs(z), assuming that has a FIR 
structure.  

2.1 Filtered-reference LMS (FX-LMS) 
Algorithm 

This algorithm is based on the steepest descent 
algorithm, which is mostly used for adapting FIR 
controllers (Elliot, 2001). The expression for 
adapting the coefficients of controller W(z) of fig. 2 is 

iven by: g
 
 ( 1) ( ) Jn n µ ∂

+ = −
∂

w w
w

 (3) 

 
where J is a quadratic index of performance, equal to 
the error signal squared e2(n), and ∂·/∂w is the 

radient: g
 
 [2 ( ) ( )J ]E n e n∂

=
∂

r
w

 (4) 

 
For this algorithm a simpler version than the one 
given by eq. (4) is used, since the expected value of 
the product is not reckoned, but only the current 

alue of the gradient. Thus, v
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The expression for adapting the coefficients of the 
controller is given by: 
 
 ˆ( 1) ( ) ( ) (n n n e )nα+ = −w w r  (6) 
 
where α = 2µ is the convergence coefficient and 

 is the estimate of the filtered reference signal, 
obtained with the estimate of the G
ˆ( )r n

s(z) model. The 
algorithm is called filtered-reference LMS because 
the filtered reference signal is used to adapt the 
coefficients. The block diagram of the algorithm is in 

iven in fig. 3. g
 

u(n)

xG (z)s

e(n)+

r(n)

G (z)sw(n) +
x(n)

d(n)

Figure 3: Block diagram for FX-LMS algorithm. 
 
If the reference signal x(n) were used instead of the 
filtered reference r(n) to adapt the coefficients, the 
adaptation would be wrong because there is a time 
shift between the signal x(n) and the error signal 
e(n). This is a consequence of the existence of a time 
delay in Gs(z). This algorithm is rather simple to 
implement and is numerically stable, being therefore 
frequently used (Elliot, 2001). 

2.2 Normalized filtered-reference LMS 
algorithm (NFX-LMS) 

In the previous approach the adaptation of the 
coefficients of the controller W(z) is directly 
proportional to the coefficient of convergence α and 
the vector r(n). Sometimes, when r(n) has large 
values, the FX-LMS algorithm has a problem of 
amplification of the gradient noise (Haykin, 2002). 
The coefficients of the vector r(n) are normalized in 
order to solve this problem. Haykin (2002) suggests 
dividing the coefficients by the Euclidean norm of 
vector r(n). The expression for adapting the 
coefficients becomes: 
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where δ it is a very small and positive number. This 
term allows preventing numerical difficulties when 
r(n) is small because the Euclidean norm takes small 
values. Elliot (2001) suggests another solution where 
the coefficients of vector r(n) are divided by the 
inner product of vector r(n), rTr. Whatever the 
option is, algorithm NFX-LMS presents the 
following advantages over algorithm FX-LMS: faster 

convergence rate and sometimes better performance 
of the obtained controller; the algorithm is more 
stable when there is a change of the spectral richness 
of the reference signal x(n). This normalization of the 
filtered reference signal can be applied to other 
algorithms. 

2.3 Leaky LMS algorithm 

For this algorithm another index of quadratic 
performance is used: 
 
  (8) 2

2 ( )J E e n β⎡ ⎤= +⎣ ⎦ w wT

n e n

 
where β is a positive constant. This performance 
index weighs both the average of the error signal e(n) 
squared as well as the sum of the squares of the 
coefficients of the controller. This performance index 
prevents the coefficients of the controller from taking 
large values that can render the algorithm unstable 
when both the amplitude of the reference signal, x(n), 
and its spectral components undergo variations 
Elliot, 2001). The adaptation becomes: (

 
 ˆ( 1) (1 ) ( ) ( ) ( )n nαβ α+ = − −w w r . (9) 
 
Eq. (9) is different for the FX-LMS algorithm 
because of term (1-αβ), which is called leakage 
factor. This term must take values between 0 and 1 
and is normally 1. When it takes another value the 
error signal e(n) is not zero and the value of 
coefficients decreases with each iteration. Adding the 
term (1- αβ) to the coefficients adapting equation 
allows the increasing of the robustness of the 
algorithm. On the other hand the term (1- αβ) 
reduces the noise attenuation that can be reached. 
Thus, the choice of the value for beta must take into 
account the robustness of the algorithm and the 
reduction of the attenuation. In most applications, the 
use of a small value of beta allows a sufficient 
increase of robustness and the attenuation of the 
acoustic noise suffers little (Elliot, 2001). The 
modification introduced in the FX-LMS algorithm 
can also be implemented in the other algorithms. 

2.4 Modified filtered-reference LMS 
algorithm (MFX-LMS) 

The FX-LMS algorithm requires a rather slow 
adaptation compared with the plant dynamics so that 
the error may be given by eq. (1). This is because 
adapting the coefficients is somehow a nonlinearity 
which influence depends on the speed of adaptation 
(Elliot, 2001). Thus, to make this influence negligible 
the adaptation of the coefficients must be very slow 
when compared with the dynamics of the plant. This 
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should be regarded as a disadvantage. The 
arrangement shown in fig. 4 allows overcoming this 
limitation. In this scheme, the estimated filtered 
reference signal, , in the adaptation path of the 
controller is common to the adaptive filter and to the 
adaptation, and has no time shift in relation to the 
modified error, e’

ˆ( )r n

m(n). 

-
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Figure 4: Block diagram for MFX-LMS algorithm. 
 
F
 

or this algorithm the adaptation is given by: 

 ˆ( 1) ( ) ( ) (mn n n e )nα+ = −w w r  (10) 
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here em(n) is the modified error, given by: 
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The modified error can be seen as a prediction of the 
error for the case where the coefficients of the 
controller do not change at each instant. The MFX-
LMS algorithm usually presents convergence rates 
larger than those of the FX-LMS algorithm (Elliot, 
2001). This is because the adaptive filter and the 
plant estimate were interchanged and thus the delay 
between the exit of the controller and the error signal 
was eliminated. For this reason it is no longer 
necessary to consider the delay in the restriction of 
the convergence coefficient, and larger steps may be 
used with the MFX-LMS algorithm. However the 
MFX-LMS algorithm has the disadvantage of 
requiring more computational means. 

2.5 Frequency domain filtered-reference 
LMS algorithm (FX-LMS Freq) 

For the FX-LMS algorithm the estimate of the 
gradient of eq. (5) was used to adapt the coefficients 
of the controller. The estimate of the gradient will be 
assumed to be given by the average of the product 
r(n)e(n) during N instants. Thus, the adaptation is 
given by: 
 
 

1

( ) ( ) ( ) ( )
n N

l n
n N n l e l

N
α + −

=

+ = + ∑w w r  (12) 

 
In this case, the adaptation is carried only after N 
time samples. The use of the average of the product 
r(n)e(n) during N instants can be considered as a 

more precise estimate of the gradient than the use of 
the product r(n)e(n) for each time sample. In practice 
adaptation with eq. (12) has a convergence rate very 
similar to the FX-LMS algorithm, since though the 
adaptation for eq. (12) has a lower frequency, the 
value of the update of the coefficients is larger 
(Elliot, 2001). The summation in eq. (12) can be 
thought of as an estimate of the crossed correlation 
between the filtered reference r(n) and the error 
signal e(n). The estimate must be reckoned from   i = 
0 up to I-1, where I is the number of coefficients of 
the adaptive filter. For long filters the reckoning of 
the estimate can be inefficient in the time domain, 
requiring a large computational effort. For large 
values of I it is more efficient to calculate the cross 
correlation in the frequency domain. If discrete 
Fourier transform (DFT) with 2N points for the 
signals e(n) and r(n) are considered, an estimate of 
the cross spectral density can be calculated through: 
 
  (13) *ˆ ( ) ( ) ( )reS k R k E k=
 
where k is the index of discrete frequency and * 
means the complex conjugate. Some care must be 
taken to prevent the effect of circular convolution. 
Thus, before reckoning the DFT of the error signal, 
e(n), with 2N points, in the block with 2N points of 
the error signal the first N points must be zero. This 
will eliminate the non-causal part of the cross 
correlation (Elliot, 2001). The expression that gives 
he adaptation of the coefficients is: t

 
 { }*( 1) ( ) ( ) ( )m mm m IFFT R k E kα

+
+ = −w w  (14) 

 
where { }+ means the causal part of the cross 
correlation, IFFT is the inverse fast Fourier transform 
and α is the convergence coefficient. Rm(k) is directly 
obtained multiplying the DFT of the reference signal 
X(k) by the frequency response estimate of the 
system. This algorithm is called fast LMS. Fig. 5 
shows the block diagram of this algorithm. 

The advantage of the fast LMS algorithm over 
the FX-LMS is that it requires few computations. 
Assuming that the implementation of the DFT 
requires 22 log 2N N  multiplications, the FX-LMS 
algorithm requires 2N2 calculations per iteration 

hile fast LMS needsw 2(16 6 log 2 )N N+ . 
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Figure 5: Block diagram for FX-LMS Freq algorithm. 

2.6 Filtered-u Algorithm 

Up to now Finite Impulse Response (FIR) filters 
have been considered to build the controllers. 
However, Infinite Impulse Response (IIR) filters can 
be used as well. In this case, the equivalent to fig.2 
for IIR controllers is shown in fig. 6. 

t(n)

H(z)

+

1-A(z)

B(z) u(n)

f

s

G (z)

G (z)
e(n)

d(n)

s(n)x(n) + +++

Figure 6: Block diagram for IIR controller.  
Compared with the block diagram of fig. 2 for the 
FIR controllers, we can notice that this does not 
possess a specific feedback to cancel the natural 
feedback path of the system. In this case the 
recursive characteristic of IIR controllers is assumed 
to deal with the feedback path problem. However, 
practice shows that if this estimation is included 
numerical stability is guaranteed and the 
performance is improved.  

The filtered-u algorithm uses IIR filter as 
controller. It is based on the recursive LMS (RLMS) 
algorithm (see Elliot (2001) or Haykin (2002)). Fig. 
7 shows the block diagram of the filtered-u 
algorithm. The adaptation of the coefficients aj and bi 
is given by: 
 1 1( 1) ( ) ( ) (n n e n )nγ α+ = −a a t

)n
 (15) 

 2 2( 1) ( ) ( ) (n n e nγ α+ = −b b r  (16) 
 
where α1, α2 are the convergence coefficients, t(n) 
and r(n) are respectively the filtered output and the 
filtered reference, and γ1 and γ2 are the forgetting 
factors.  

H(z)

u(n)

f

i

j

G (z)

G (z)
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b (n)
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G'(z)

e(n)
d(n)

t(n)
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s(n)x(n) + ++
+

+
+

s

Figure 7: Block diagram for filtered-u algorithm. 
 
The use of different convergence coefficients may be 
shown in practice to allow for higher convergence 
rates and the use of leakage factors slightly under 1 
allows for a greater robustness of the algorithm 
(Elliot, 2001). The plants modified response, G'(z), is 
equal to Gs(z). For that purpose, the coefficients of 
the controller H(z) are assumed to be very slowly 
adapted in comparison to the dynamics of the system 
of the system Gs(z). The same had already been 
assumed for the adaptation of the FIR controller, but 
for the adaptation of the IIR controller this is even 
more necessary since the controller is recursive. One 
of the interesting characteristics of the filtered-u 
algorithm is that it presents a self-stabilising 
behaviour that is also to be found in RLMS 
algorithms (Elliot, 2001). During the adaptation of 
the controller, if a pole leaves the unit-radius circle, 
the natural evolution of filtered-u algorithm brings it 
back inside. Although some researchers have 
addressed this behaviour, still it was not possible to 
discover the mechanism that results in this self-
stabilising property (Elliot, 2001). The self-
stabilising behaviour is found in many practical 
applications, and that is why the filtered-u algorithm 
is the most used in active cancellation of noise 
applications (Elliot, 2001). 

3 EXPERIMENTAL SET-UP 

The experimental set-up used is shown in Fig. 8. A 
PVC pipe with 0.125 m of diameter and 3 m of 
length was used for simulating the cylindrical duct. 
Given the diameter of the duct, the cut-on frequency, 
which is the frequency above which waves may no 
longer be considered plane, is 1360 Hz. To simulate 
the acoustic noise to cancel a conventional 
loudspeaker was placed in one of the ends of the 
duct. At 1.25 m away from this end two loudspeakers 
are placed to act as source of acoustics waves for 
noise cancellation. For the detection of acoustic noise 
a microphone, placed 0.08 m away from the primary 
noise source, is used. The error microphone is placed 
t the opposite end of the primary noise source. a
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Figure 8: Block diagram of experimental setup. 
 

Besides the duct, loudspeakers and microphones, 
the experimental set-up consists of: four low-pass 
filters that allow filtering the signals to remove the 
effects of aliasing and zero-order-hold; an amplifier 
that allows amplifying the signals that feed the 
loudspeakers; pre-amplifiers for the microphones; 
and two computers, one the slave act has a digital 
controller and the other the master is used for data 
analysis. The slave computer is a Pentium III 
733MHz with 512MB of RAM memory, running on 
xPC Target, having a data acquisition board NI-DAQ 
6024E. Algorithms have been implemented as S-
Functions in the Matlab/Simulink environment.  

Due to hardware restrictions on the cancellation 
source this set-up cannot generate relevant signals 
for frequencies below 200 Hz. Therefore, the 
frequency range where acoustic noise cancellation is 
intended is restricted to the frequency bandwidth of 
[200 Hz - 1000 Hz]. 

4 IDENTIFICATION 

The models used are discrete in time since the 
implementation of the controller is made using a 
digital computer. Therefore, the simulations will be 
based on discrete models. This requires the models to 
include the devices associated with the discretisation 
and restoration of the signals, A/D and D/A 
conversions, anti-aliasing and reconstruction filters, 
and the dynamic of the microphones, loudspeakers 
and amplifiers associated to the experimental set-up. 
Assuming that the behaviour of these devices is 
linear, then each one can be represented by a discrete 
ransference function. The necessary models are: t

 
Gs(z) - secondary acoustic path: includes computer - 
secondary source - error microphone - computer; 
Gf(z) - acoustic feedback path: includes computer- 
secondary source - reference microphone-computer.  
 

Models have been obtained for the sampling 
frequency of 2500 Hz (sampling time 0.4ms) because 
that allows the Nyquist frequency of 1250Hz, to be 
slightly larger than the superior limit of the frequency 
range to cancel, 1000 Hz. FIR and ARX models have 
been obtained. Variance account for (VAF) criterion 
and root mean square (RMS) have been used for 
models validation. Table 1 shows the results obtained 
in these identifications. 

Table 1:  Order, VAF and RMS of the obtained models. 

Order 
FIR ARX 

VAF (%) RMS (V) 
Model

I na nb FIR ARX FIR ARX 
Gs(z) 500 150 150 99.96 99.94 0.0193 0.0195
GF(z) 450 150 150 99.60 99.57 0.0363 0.0373

 
As shown above the obtained models have 

excellent performances. This shows the plant to have 
a linear behaviour being unnecessary to appeal to 
ANC advanced techniques. 

5 EXPERIMENTAL RESULTS 

The previously mentioned algorithms have been 
implemented and test for different noise conditions in 
the duct. However, before presenting the results it 
must be point out that the use of the normalisation of 
the filtered reference signal was very important. 
Experiences have shown that the normalised LMS 
technique has a significant influence in the behaviour 
of the algorithms. In fig. 9 the evolution of the 
attenuation is shown for the FX-LMS algorithm 
when the variance of white noise changed, for the 
following cases: the filtered reference signal was not 
normalized, was normalised using the Euclidean 
norm, and was normalised using quadratic 
normalization. The behaviour of the other algorithms 
is similar. In the figures that follow, attenuation is 

iven by the expression g
 

 
2

10 2
 ( )  10log

E e
Attenuation dB

E d

⎛ ⎡ ⎤⎣ ⎦⎜=
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

⎞
⎟  (18) 

 
where e is the error signal, d the disturbance and E[ ] 
is the expected value operator. In this case the 
expected value is given by the average of last 50 
samples. 
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Figure 9: Evolution of attenuation for the FX-LMS 
algorithm. 

 
As can be observed the normalization of the 

filtered reference signal allows obtaining higher 
attenuations. The quadratic norm is the only one that 
ensures the stability of the algorithms when the 
spectral power changes. If this were not the case 
different adaptation steps would have to be used to 
keep the algorithms stable.  

For the comparison of the algorithms two types 
of disturbances had been considered: white noise and 
pure tones. The frequency range of the white noise is 
[200 Hz; 1000 Hz], for the reason explained before. 
Tones under 200 Hz have also not been used. 
Parameters in the algorithms were chosen based 
upon other experiences that had shown the influence 
of parameters in algorithms performance. These 

alues are: v
 

• FX-LMS: w = 200, µ = 0.10; 
• MFX-LMS: w = 400, µ = 0.1; 
• Filtered-u: na = 150, nb = 100, µa = 0.01,                 

µb = 0.025; 
• FX-LMS Freq: w = 256, µ = 0.16. 

 
Common to all the algorithms are the leakage factor, 
equal to one, and the normalization method, which 
was the quadratic norm.  

Results are shown in fig. 10-13 for different 
types of noise to be cancelled, and Table 2 that 
indicates the computational burden for the white 

oise case. n
 
• White noise 
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Figure 10: Evolution of attenuation for white noise. 

 

Table 2: Execution time of each iteration for the white 
noise case. 

 

Algorithm FX-
LMS 

MFX-
LMS 

Filtered 
-u 

FX-LMS 
Freq 

Average time (ms) 0.044 0.067 0.081 0.027 
Maximum time (ms) 0.047 0.081 0.089 0.065 

• Pure tones: 320 Hz + 640 Hz + 960Hz.  
 
All pure tones have the same spectral power. The 
adaptation steps of FX-LMS and FX-LMS Freq 
algorithms had to be reduced so that they would 
remain stable. Steps used were µ = 0,03 for the FX-
LMS and µ = 0,06 for the FX-LMS Freq. 
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Figure 21: Evolution of attenuation for pure tones. 

 
The two previous figures show that the MFX-

LMS algorithm obtains a larger attenuation sooner 
but the filtered-u algorithm obtains slightly larger 
attenuations. These two algorithms get the best 
performances of the four. Worst of them all is the 
FX-LMS Freq, even though it presents the most 
reduced average time for executing each iteration. 
This shows how efficient algorithms are in the 
frequency domain. However, the execution time of 
each iteration is not important in this case since all 
times are clearly under the sampling time of 0.4ms. 
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This is because of the high computational power of 
the slave computer. 
 
Robustness to the variations of the model of the 
eedback path f

 
An important question is the robustness to the 

degradation of the model of the acoustic feedback 
path Gf(z), since when this model becomes poor the 
simplification assumed on point 2.1 (that the model 
cancels the feedback path exactly) is no longer 
verified. If the residual of the cancellation is large, 
the performance of the algorithms based on scheme 
of Fig. 2 will degrade and may even be unstable.  

The filtered-u algorithm can deal with the 
feedback path problem. However, using the model of 
Fig. 6, this algorithm has revealed to be unstable on 
start. To solve this problem the adaptation steps had 
to be reduced, and thus, have a slower evolution of 
attenuation. Using the scheme of fig. 2 with filtered-
u algorithm has proved to be more robust and have a 
faster and more regular evolution of attenuation.  

That is why two experiences have been carried 
out in which the performance of estimated model of 
Gf(z) was reduced. In the two following figures the 
results for the MFX-LMS algorithms and filtered-u 
algorithms are shown. Only those are shown because 
they are the ones with better performances, as was 
seen above. Parameters used in the algorithms are 
those given above. 

Figures 12 and 13 show that the filtered-u 
algorithm is more robust to variations of the 
estimated model of Gf(z) model even though it leads 
to more irregular evolutions. This shows that the 
filtered-u algorithm is the one that should be applied 
in practice since it has a performance identical to the 
MFX-LMS but is more robust to modelling errors. 
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Figure 12: Evolution of attenuation for MFX-LMS 
algorithm for different estimated models of Gf(z). 
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Figure 13: Evolution of attenuation for filtered-u algorithm 

for different estimated models of Gf(z). 

6 CONCLUSIONS 

This paper evaluates the use of feedforward ANC to 
cancel noise in ducts. The FX-LMS, NFX-LMS, Leaky 
LMS, MFX-LMS, FX-LMS Freq and the Filtered-u 
algorithms have been considered. The best 
performance was achieved with the filtered-u 
algorithm. Active cancellation of acoustic noise was 
seen to be possible in practice since attenuations 
obtained were about 18 dB for white noise and 35 dB 
for pure tones. Moreover, algorithms were seen to be 
robust when models degrade. 

In what concerns the algorithms it was shown 
that the normalization of the filtered reference signal 
is of extreme importance allowing to ensure the 
stability of the algorithms as well as better 
attenuations. However this happens only for the 
quadratic norm. 
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