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Abstract This paper presents the State Partition based Mixed Logical Dynamical (SPMLD) formalism as a new 
modeling technique for a class of discrete-time hybrid systems, where the system is defined by different 
modes with continuous and logical control inputs and state variables, each model subject to linear 
constraints. The reformulation of the predictive strategy for hybrid systems under the SPMLD approach is 
then developed. This technique enables to considerably reduce the computation time (with respect to the 
classical MPC approaches for PWA and MLD models), as a positive feature for real time implementation. 
This strategy is applied in simulation to the control of a three tanks benchmark. 

1 INTRODUCTION 

Hybrid systems become an attractive field of 
research for engineers as it appears in many control 
applications in industry. They include both continu-
ous and discrete variables, discrete variables coming 
from parts described by logic such as for example 
on/off switches or valves. Various approaches have 
been proposed for modeling hybrid systems (Brani-
cky et al., 1998), like Automata, Petri nets, Linear 
Complementary (LC), Piecewise Affine (PWA) 
(Sontag, 1981), Mixed Logical Dynamical (MLD) 
models (Bemporad, and Morari, 1999). 

This paper examines a class of discrete-time 
hybrid systems, which consists of several models 
with different dynamics according to the feasible 
state space partition. Each model is described with 
continuous and logical states and control inputs. 
Consequently, the dynamic of the system depends 
on the model selected in relation to linear constraints 
over the states and on the inputs values. 

On the other hand, model predictive control 
(MPC) appears to be an efficient strategy to control 
hybrid systems. Considering the previous particular 
class of hybrid systems, implementing MPC leads to 
a problem including at each prediction step the states 

and inputs vectors (both continuous and discrete 
variables), the dynamic equation and linear 
constraints, for which a quadratic cost function has 
to be optimized. Two classical approaches exist for 
solving this optimization problem. 

First, all possible logical combinations can be 
studied at each prediction time, which leads solving 
a great number of QPs. Each of these QPs is related 
to a particular scenario of logical inputs and modes. 
This is the PWA approach. The number of QPs can 
be reduced by reachability considerations (Pena et 
al., 2003). 

The second moves the initial problem through 
the MLD formalism to a single general model used 
at each prediction step. This MLD formalism 
introduces many auxiliary logical and continuous 
variables and linear constraints. At each prediction 
step, all the MLD model variables have to be solved 
(even if some of them are not active). However, the 
MLD transformation allows utilizing the Branch and 
Bound (B&B) technique (Fletcher and Leyffer, 
1995), reducing the number of QPs solved. 

This paper develops a technique which aims at 
implementing MPC strategy for the considered class 
of hybrid systems, as a mixed solution of the two 
classical structures presented before. It is based on a 
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new modeling technique, called State Partition based 
MLD approach (SPMLD) formalism, combining the 
PWA and MLD models. The complexity of this 
formalism is compared to that obtained with the 
usual PWA and MLD forms, which can also model 
this class of hybrid systems as well. 

The paper is organized as follows. Section 2 
presents a short description of the PWA and MLD 
hybrid systems. General consideration about model 
predictive control (MPC) and its classical 
application to PWA and MLD systems are 
summarized in Section 3. Section 4 develops the 
State Partition based MLD approach (SPMLD) and 
examines the application of MPC to hybrid systems 
under this formalism. Section 5 gives an application 
of this strategy to water level control of a three tanks 
benchmark. Section 6 gives final conclusions. 

2 HYBRID SYSTEMS MODELING 

2.1 Mixed Logical Dynamical model 

The MLD model appears as a suitable formalism for 
various classes of hybrid systems, like linear hybrid 
or constrained linear systems. It describes the sys-
tems by linear dynamic equations subject to linear 
inequalities involving real and integer variables, 
under the form (Bemporad and Morari, 1999) 
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are respectively the vectors of continuous and binary 
states of the system, of continuous and binary 
(on/off) control inputs, of output signals, of auxiliary 
binary and continuous variables. 
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Figure 1: MLD model structure 

The auxiliary variables are introduced when 
translating propositional logic into linear inequalities 

as described in Figure 1. All matrices appearing in 
(1) can be obtained through the specification 
language HYSDEL (Hybrid System Description 
Language), see (Torrisi et al., 2000). 

2.2 Piecewise Affine model 

Another framework for discrete time hybrid systems 
is the PWA model (Sontag, 1981), defined as 
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ii 1=  is the polyhedral partition of the state 

and input spaces (s being the number of subsystems 
within the partition). Each 
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where kkk  denote the state, input and output 
vector respectively at instant . Each subsystem i  
defined by the 7-uple 

yux ,,
k S( ),,,,,,, iiiiiii qQgfCBA  

( )si ,,2,1 L∈  is a component of the PWA system 
(2). ( )mnpinpimninni i +××× ℜ∈ℜ∈ℜ∈ℜ∈ QCBA ,,,  
and  are suitable constant vectors or 
matrices, where , ,  are respectively the 
number of states, inputs, outputs, and i  is the 
number of hyperplanes defining the i -polyhedral. In 
this formalism, a logical control input is considered 
by developing an affine model for each input value 
(1/0), defining linear inequality constraints linking 
the model with the relevant input value. 

iii qgf ,,
n m p

p

It has been shown in (Bemporad et al., 2000), 
that MLD and PWA models are equivalent, which 
enables transformation from one model to the other. 
A MLD model can be transferred to a PWA model 
with the number of subsystems inside the polyhedral 
partition equal to all possible combination of all the 
integer variables of the MLD model (Bemporad et 
al., 2000) (a technique for avoiding empty region is 
presented in (Bemporad, 2003)) 

  (4) lll rmns ++= 2

3 MODEL PREDICTIVE CONTROL 

Model predictive control (MPC) has proved to 
efficiently control a wide range of applications in 
industry, including systems with long delay times, 
non-minimum phase, unstable, multivariable and 
constrained systems. 

The main idea of predictive control is the use of 
a plant model to predict future outputs of the system. 
Based on this prediction, at each sampling period, a 
sequence of future control values is elaborated 
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through an on-line optimization process, which 
maximizes the tracking performance while satisfying 
constraints. Only the first value of this optimal 
sequence is applied to the plant according to the 
‘receding’ horizon strategy (Dumur and Boucher, 
1998). 

Considering the particular class of hybrid 
systems previously described, implementing MPC 
leads to a problem including at each prediction step 
the states vector, the inputs vector (both continuous 
and discrete), the dynamic equation and linear 
constraints, for which a quadratic cost function has 
to be optimized. Two classical approaches exist for 
solving this optimization problem, the Branch and 
Bound technique that can be used with the MLD 
formalism and the enumeration of all possible 
logical system combinations at each prediction time 
corresponding to all particular scenarios of logical 
inputs and modes used with the PWA formalism. 

3.1 Model predictive control for the 
MLD systems 

For a MLD system of the form (1), the following 
model predictive control problem is considered. Let 

 be the current time, k  the current state, 
 an equilibrium pair or a reference 

trajectory value,  the final time, find 
k  the sequence which 
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subject to (1), where  is the prediction horizon, 
e , e  are the auxiliary variables of the equilibrium 

point or the reference trajectory value, calculated by 
solving a MILP problem for the inequality equation 
of (1). ki  denotes the predicted state vector at 
time , obtained by applying the input sequence 

 to model (1) starting from the current state 
 (same for the other input and output variables), 
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The optimization procedure of (5) leads to MIQP 
problems with the following optimization vector 
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The number of binary optimization variables is 
( )ll rmNL += . In the worst case, the maximum 

number of solved QP problems is 

 No of QPs 12 1 −= +L  (7) 

So the main drawback of this MLD formalism 
remains the computational burden related to the 
complexity of the derived Mixed Integer Quadratic 
Programming (MIQPs) problems. Indeed MIQPs 
problems are classified as NP-complete, so that in 
the worst case, the optimization time grows expo-
nentially with the problem size, even if branch and 
bounds methods (B&B) may reduce this solution 
time (Fletcher and Leyffer, 1995). 

3.2 Model Predictive control for the 
PWA systems 

Considering the PWA system under the form (2), 
assuming that the current state k  is known the 
model predictive control requires solving at each 
time step (Pena et al., 2003). 
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where  is the prediction horizon, ik+  is the 
output reference, and ki  denotes the predicted 
output vector at time 

N w
k /+y
ik + , obtained by applying the 

input sequence ku  to the 
system starting from the current state k . iiii  are 
the elements of  weighting diagonal matrices. 
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1
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In order to solve this equation the model applied 

at each instant has to be determined and all potential 
sequences of subsystems  
have to be examined, where ik  is one sub-region 
among the s subsystems at prediction time i  for 

{ }11 ,,, −++= Nkkk IIII L
I +

1,,2,1 −= Ni L . As for each model the value of the 
logical variable is fixed, the MPC problem is solved 
by a QP for each potential sequence. As the current 
state k  is known, the starting region according to 
the state partition is identified. But the initial sub-
region related to the current input control is not 
known as it appears in the domain definition (3). 
Similarly, the next steps subsystems are also 
unknown, depending on the applied control 
sequence. In general, all potential sequences of 
subsystems 

x

I  have to be examined, which increases 
the computation burden. If no constraints are 
considered, the number of possible sequences for a 
prediction horizon  is , where p  is the 
number of all possible sub-regions at instant  

N 1−N
p sm m

k
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according to the input space partition. In order to 
solve the MPC problem of (8), the number of 
quadratic programming problems to be solved is 

 No QPs  (9) 1−= N
p sm

4 MPC FOR STATE PARTITION 
BASED MLD (SPMLD) 
FORMALISM 

4.1 The SPMLD formalism 

The SPMLD model is a mixed approach where in 
each region of the feasible space a simple MLD 
model is developed. Starting from the MLD model, 
the auxiliary binary variables are divided into two 
groups . Where  is 
chosen in order to include the 
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inequalities that define δ  variables are not 
depending on x ), and  depending on . 
This partition will be further justified. The SPMLD 
model is then developed by giving 1δ  a constant 
value: for each possible combination of 1δ  a sub-
region is defined with the corresponding i  
constraints as in (3). As some logical combinations 
may not be feasible, the number of sub-regions of 
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Consequently, this model requires a smaller number 
of sub-regions than the classical PWA model for the 
same modeled system. Each sub-region has its own 
dynamic described in the same way as (1) but with a 
simpler MLD model that represents the system 
behavior in this sub-region and includes only the 
active variables in this sub-region. This partition 
always implies a reduction in the size of  and/or 

. For example, some control variables may not be 
active in sub-regions and the auxiliary continuous 
variables  depending on the 1δ  variables may 
disappear or become fixed as  is fixed where: 
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Consequently, simplified sub-regions models can be 
derived, an example of this simplification is given in 
the application section. 

The system is thus globally modeled as 
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MLD model defining the dynamics into that sub-
region.  constraints has to be included in (12). qQ ,

4.2 Reformulation of the MPC solution 

At this stage, the MPC technique developed for the 
PWA formalism must be rewritten to fit the new 
SPMLD model. Consider the initial subsystem  kI
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Then the MPC optimization problem (8) leads to the 
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This technique allows choosing different weighting 
factors for each sub-region according to its priority. 

The constraints over the state and input domains 
for each sub-region are included in the inequality 
equation of the MLD model of that sub-region using 
the HYSDEL program. The MPC optimization 
problem (15) is solved subject to the constraints 
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The number of binary optimization variables, with 
 known and constant, is given by the relation 1δ
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Therefore, if the sequence I  is fixed, the 

problem can be solved minimizing (15) subject to 
the constraints of (16). But, as only k  is known 
(where  is considered as known, and  
depends on ), all possible sequences as in 
Figure 2 have to be solved. So the number of 
possible sequences is . The optimal solution is 
provided by the resolution of these  MIQPs. In 
order to find the solution more quickly, these 
problems are not solved independently and the 
optimal value of the criterion provided by the solved 
MIQP is used to bind the result of the others. It can 
then be used by the B&B algorithm to cut branches. 

I
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Figure 2: State transition graph of the MPC optimization 
problem for a system under the SPMLD form ( 3=N ) 

4.3 Compared computational burden 

The global complexity of the MPC resolution with 
systems under the SPMLD form is reduced. First the 
related number of subsystems s  is smaller than that 
with the classical PWA model. Then, the B&B 
technique considerably decreases the number of 
solved QPs. The index sequence I  imposes the 
successive values of 1δ  over the prediction horizon 
and then the succession of region on the state space 
partition the state has to reach. This leads to non 
feasible solutions in many sub-problems, effectively 
reducing the number of solved QPs according to the 
B&B technique. This is why we partition δ  vector. 

First, the SPMLD technique is faster than the 
classical MLD because for a known sequence of 
index I , only  simple B&B trees with only 

 optimization variables have to be solved; 
i.e. smaller number of optimization binary variables 
L (17), and simpler MLD models as previously 
explained. Moreover, as explained, the optimization 
algorithm just has to look for the control sequence 
that could force the system to follow the index 

)1(12 −Nrl

zδu ,, 2

I  
and optimize the cost function with respect to all the 
associated constraints. In many root nodes at level F 
(Figure 3), this leads to non-feasible solution (more 
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frequent than in classical MLD approach), due to 
non feasible sequence whatever the value of the 
control inputs are, thus that MIQP will then quickly 
be eliminated. Furthermore, if there is a solution for 
a B&B tree at level F, it is considered as an upper 
bound for the global optimized solution for all the 
following B&B trees, which reduces the number of 
solved QPs according to B&B technique. 

)(klu  
 
 

)1( +klu  
 
 

)1( −+ Nklu

[ ])1()1()( 111 −++ Nkkk δδδ L

F 

 
Figure 3: B&B trees for optimization with SPMLD 

Then, the SPMLD technique is obviously faster than 
the classical PWA technique. First the initial index 

k  is completely known as the space partition only 
depends on  and not on  (as in the PWA 
model where p  possible subsystems at instant  
have to be examined). In addition, SPMLD models 
use the B&B technique, which considerably reduces 
the number of solved QPs while in classical PWA 
systems all the QPs must be solved. 

I
)(kx u

m k

4.4 Further improvements of the 
optimization time 

Two different techniques can be considered to 
reduce the computation load for real time 
applications. The first one introduces the control 
horizon u , which reduces the number of unknown 
future control values, i.e.  is constant for 

u . This decreases the number of binary optimi-
zation variables (17) a

N
)( ik +u

Ni ≥
nd the optimization time 
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The second one, called the reach set, aims at 
determining the set of possible regions that can be 
reached from the actual region in next few sampling 
times (Kerrigan, 2000). That is, all sequences that 
cannot be obtained are not considered. 

5 APPLICATION 

5.1 Description of the benchmark 

The proposed control strategy is applied on the three 
tanks benchmark used in (Bemporad et al., 1999). 
The simplified physical description of the three 
tanks system proposed by COSY as a standard 
benchmark for control and fault detection problems 
is presented in Figure 4 (Dolanc et al., 1997). 

 
Figure 4: COSY three tanks benchmark system 

The system consists of three tanks, filled by two 
independent pumps acting on tanks 1 and 2, 
continuously manipulated from 0 up to a maximum 
flow  and  respectively. Four switching 
valves 1 , 2 , 13  and 23V  control the flow 
between the tanks, those valves are assumed to be 
either completely opened or closed (  
respectively). The 3LV  manual valve controls the 
nominal outflow of the middle tank. It is assumed in 
further simulations that the 1LV  and 2LV  valves are 
always closed and 3LV  is open. The liquid levels to 
be controlled are denoted 1h , 2  and 3  for each 
tank respectively. The conservation of mass in the 
tanks provides the following differential equations 
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where the Qs denote the flows and A is the cross-
sectional area of each of the tanks. A MLD model is 
derived as developed in (Bemporad et al., 1999), 
introducing the following variables 

  (20) 

']231321030201[
']030201[

']23132121[
']321[

  z  z  z  z  z  zz
  δ  δδ

  V  V  V  V  QQ
  h  hh

=

=

=

=

z
δ
u
x

where 

[ ] [ ]
( )

( )
( ) 2,1         )()(

2,1     )()()(
3,2,1     )()()(

3,2,1   )(1)(

333

030

00

0

=−=
=−=
=−=

=≥↔=

ihthVtz
itztzVtz
ihthttz

ihtht

iii

iii

viii

vii
δ

δ

 

5.2 Application of MPC for the 
SPMLD formalism 

In this system, δδ =1  since the three introduced 
auxiliary binary variables depend on the states, thus 

ll rr =1  and the number of sub-systems is 

  (21) 82 1 == lrs
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Inside each sub-region, a simple MLD model is 
developed, that takes into account only the system 
dynamics in this sub-region. In some sub-regions a 
reduction in the size of u  and  appears; for 
example in the sub-region where  it 
clearly appears that the two valves 1V  and 2V  of the 
input vector are not in progress, as the liquid level in 
this region is always less than the valves level. 
Consequently, the continuous auxiliary variables 

3,2,10 =ii  and { } 2,1=ii  corresponding to the flows 
that pass through the upper pipes are useless. It 
results from this a simple model with: 

z
[ ]000'1 =δ

{ }z z
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Let us consider now the following specification: 
starting from zero levels (the three tanks being 
completely empty), the objective of the control 
strategy is to reach the liquid levels m 5.01 =h , 

 and . The MPC technique for 
a SPMLD model has been implemented in 
simulation to reach the level specification with 

. The results are presented on Figure 5 for the 
tanks levels and on Figure 6 for the control signals. 

m 5.02 =h m 1.03 =h

2=N
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Figure 5: Water levels in the three tanks 
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Figure 6: Controlled variables 

The level of the third tank oscillates around 0.1 as 
 does not correspond to an equilibrium 

point. Consequently, the system opens and closes the 
two valves 1V  and 2V  to maintain the level in the 
third tank around the desired level of 0.1m. 

1.03 =h

 

5.3 Comparison of the approaches 

As a comparison purpose between the SPMLD 
model, the classical MLD model and the classical 
PWA model strategies, the same previous level 
specification has been considered with . The 
MLD model described in (Bemporad et al., 1999) 
has been used for the three tanks modeled by (20); 
this MLD model transfers to a PWA model with 

2=N

128=s  subsystems (with 28 empty regions). The 
classical PWA model has not been developed as it 
needs 100 sub-models and is in fact not required to 
compare complexity. For that comparison, looking 
at the number of QPs that have to be solved during 
optimization is sufficient. 

Table 1 illustrates for the total time 
required to reach the specification level, the total 
number of QPs solved, and the maximum time and 
maximum QPs to find the optimized solution at each 
iteration. It can be seen that the difference between 
the SPMLD technique and the other classical 
techniques is quite large, the SPMLD model 
allowing real time implementation and avoiding 
exponential explosion of the algorithm (the sampling 
time of the three tanks benchmark is 10 s.). All data 
given above were obtained using the MIQP Matlab 
code (Bemporad and Mignone, 2000), on a 1.8 MHz 
PC with 256 Mo of ram. Same comparisons are 
presented with 

2=N

3=N  in table 2. 

Table 1: Comparison of performances obtained with the 
SPMLD model, the classical MLD model and the classical 
PWA model for 2=N . 

Approach 
No of 
QPs 

solved 

Max. 
No. QPs 

/ step 

Total 
time 

Max. 
time / 
step 

Classical 
PWA 8 800 1 600 * * 

Classical 
MLD 11 130 2 089 822.97 s 138.97 s 

SPMLD 832 218 15.28 s 3.90 s 

Table 2: Comparison of performances obtained with the 
SPMLD, MLD and PWA models for  3=N

Approach No of QPs 
solved 

Max. No.  
QPs / step 

Total 
time 

Max. 
time / 
step 

Classical 
PWA 880 000 160 000 * * 

Classical 
MLD 25 606 6 867 5243.6 

s 
1 147.80 

s 

SPMLD 3 738 1 054 137.54 s 37.65 s 

This table shows that no real time implementation is 
possible with 3=N  for the SPMLD form, although 
the maximum time per iteration is much smaller in 
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this case. But it must be noticed that the results in 
table 1 and 2 for the SPMLD model are achieved 
without applying techniques described in section 
4.4. For example using a prediction horizon 3=N  
and a control horizon 1=uN  leads to the following 
results enabling real time implementation 

No QPs solved = 1224, Max. No QPs/step = 326 

Total optimization time = 29.24 s., Max. time/step = 7.92 s. 

The technique of MPC for SPMLD systems has 
been examined also with a simple automata, where 
automata of Figure 7 have been added to 1V  and 2V  
valves of the three tanks benchmark. We assumed 
for a simplification purpose that 03 0=δ  i.e. the 
level in the third tank is always behind the hv level. 

V1 
open 

 
Wait 

V2 
open 

a b
close 

 

close 

close a 

b  
Figure 7: added Automata to the three tanks benchmark. 

The automata of Figure 7 can be presented as follows 
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The SPMLD technique succeeds to reduce the total 
optimization time to arrive to the specifications, 
from 5691.4 s for the classical MLD technique to a 
173.5 s, solving 3990 QPs instead of 60468 QPs 
where for each sequence I,  variables as well as 
the logical control variables that control the 
automata are known. 

δ

6 CONCLUSION 

This paper presents the SPMLD formalism. It is 
developed by partitioning the feasible region 
according to the auxiliary binary elements 1  of the 
MLD model that depends on the state variables. A 
reformulation of the MPC strategy for this 
formalism has been presented. It is shown that the 
SPMLD model successfully improves the 
computational problem of the mixed Logical 
Dynamical (MLD) model and Piecewise Affine 
(PWA) model. Moreover, the partition into several 
sub-regions enables to define particular weighting 
factors according to the priority of each region. 
Future work may consider examining  variables 
that depends on the control inputs, by partitioning 
the feasible region according to those variables also 

instead of leaving them free included in the 
optimization vector. 

δ

δ
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