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Abstract: A dynamic booking policy for multiple fare classes that share the same seating pool on one leg of an airline 
flight, when seats are booked in a nested fashion and when lower fare classes book before higher ones, is 
determined. The dynamic policy of airline booking makes repetitive use of an optimal static policy over the 
booking period, based on the most recent demand and capacity information. It allows one to allocate seats 
dynamically and anticipatory over time. 

1 INTRODUCTION 

It is common practice for airlines to sell a pool of 
identical seats at different prices according to 
different booking classes to improve revenues in a 
very competitive market. In other words, airlines sell 
the same seat at different prices according to 
different types of travellers (first class, business and 
economy). The question then arises whether to offer 
seats at a relatively low price at a given time with a 
given number of seats remaining or to wait for the 
possible arrival of a higher paying customer. 
Assigning seats in the same compartment to 
different fare classes of passengers in order to 
improve revenues is a major problem of airline seat 
inventory control. This problem is usually 
considered in three stages according to increasing 
difficulty. First is the one-leg problem, which deals 
with one airplane for one takeoff and landing and 
ignores the potential revenue impact of other links of 
the passengers' itineraries. Second is the multihop 
problem, which deals with one airplane having 
multiple takeoffs and landings (still ignoring the 
impact of other links). The third is the origin-
destination network (OD network) problem, which 
considers many airplanes having many takeoffs and 
landings on a routing network. 

This paper deals with the above problem under 
the following assumptions: (i) Single flight leg: 
Bookings are made on the basis of a single departure 
and landing. No allowance is made for the 
possibility that bookings may be part of larger trip 
itineraries; (ii) Independent demands: The demands 
for the different fare classes are stochastically 

independent; (iii) Low before high demands: The 
lowest fare reservations requests arrive first, 
followed by the next lowest, etc.; (iv) No 
cancellations: Cancellations, no-shows and 
overbooking are not considered; (v) Limited 
information: The decision to close a fare class is 
based only on the number of current bookings; (vi) 
Nested fare classes: Any fare class can be booked 
into seats not taken by bookings in lower fare 
classes. We seek the dynamic policy of airline 
booking that makes repetitive use of an optimal 
static policy over the booking period, based on the 
most recent demand and capacity information. It 
allows one to allocate seats dynamically and 
anticipatory over time.  

2 STATIC BOOKING POLICY 

Littlewood (1972) was the first to propose a static 
solution method for the seat inventory control 
problem for a single leg flight with two fare classes. 
The idea of his scheme is to equate the marginal 
revenues in each of the two fare classes. He suggests 
closing down the low fare class when the certain 
revenue from selling another low fare seat is 
exceeded by the expected revenue of selling the 
same seat at the higher fare. That is, low fare 
booking requests should be accepted as long as 
 

  { },Pr 1112 uXcc >≥  (1) 
 
where c1 and c2 are the high and low fare levels  
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respectively, X1 denotes the demand for the high fare 
class, u1 is the number of seats to protect for the high 
fare class and Pr{X1>u1} is the probability of selling 
all protected seats to high fare passengers. The 
smallest value of u1 that satisfies the above condition 
is the number of seats to protect for the high fare 
class, and is known as the protection level of the 
high fare class. The concept of determining a 
protection level for the high fare class can also be 
seen as setting a booking limit, a maximum number 
of bookings, for the lower fare class. Both concepts 
restrict the number of bookings for the low fare class 
in order to accept bookings for the high fare class.  

Richter (1982) gave a marginal analysis, which 
proved that (1) gives an optimal allocation 
(assuming certain continuity conditions).  

Optimal policies for more than two classes have 
been presented independently by Curry (1990), 
Wollmer (1992), Brumelle and McGill (1993), and 
Nechval et al. (2002a, 2002b). Curry uses 
continuous demand distributions and Wollmer uses 
discrete demand distributions. The approach 
Brumelle and McGill propose, is based on 
subdifferential optimization and admits either 
discrete or continuous demand distributions. They 
show that an optimal set of nested protection levels, 
u(1), u(2), . . . , u(m-1), where the fare classes are 
indexed from high to low, must satisfy the 
conditions: 

))},(({))}(({ 1 juREcjuRE jjj −++ ≤≤ δδ     (2) 
 

for each j=1, 2, …, m-1, where  is the 
expected revenue from the j highest fare classes 
when u(j) seats are protected for those classes and δ

))}(({ juRE j

+ 
and δ− are the right and left derivatives with respect 
to u(j) respectively. These conditions express that a 
change in u(j) away from the optimal level in either 
direction will produce a smaller increase in the 
expected revenue than an immediate increase of cj+1. 
The same conditions apply for discrete and 
continuous demand distributions. Notice, that it is 
only necessary to set m-1 nested protection levels 
when there are m fare classes on the flight leg, 
because no seats will have to be protected for the 
lowest fare class. Brumelle and McGill (1993) show 
that under certain continuity conditions the 
conditions for the optimal nested protection levels 
reduce to the following set of probability statements: 
 

c2=c1Pr{X1>u(1)}, 
 

c3=c1Pr{X1>u(1) I X1+X2>u(2)}, 
M 

cm=c1Pr{ X1>u(1) I X1+X2>u(2) I 
 

… I X1+X2 L +Xm−1>u(m-1)}. (3) 

These statements have a simple and intuitive 
interpretation, much like Littlewood’s rule. Just like 
Littlewood’s rule, this method is based on the idea 
of equating the marginal revenues in the various fare 
classes. In Nechval et al. (2002a) use is made of a 
technique of Lagrange multipliers (Huang et al., 
1970; Nechval, 1982, 1984), which admits 
continuous demand distributions and allows one to 
obtain results in the form suitable for a practical use. 
Robinson (1995) finds the optimality conditions 
when the assumption of a sequential arrival order 
with monotonically increasing fares is relaxed into a 
sequential arrival order with an arbitrary fare order. 
Furthermore, Curry (1990) provides an approach to 
apply his method to origin–destination itineraries 
instead of single flight legs, when the capacities are 
not shared among different origin–destinations.   

3 DYNAMIC BOOKING POLICY 

It will be noted that the solution methods described 
above are all static. This class of solution methods is 
optimal under the sequential arrival assumption as 
long as no change in the probability distributions of 
the demand is foreseen. However, information on 
the actual demand process can reduce the 
uncertainty associated with the estimates of demand. 
Hence, repetitive use of a static method over the 
booking period, based on the most recent demand 
and capacity information, is the general way to 
proceed. 

In this section, we consider a flight for a single 
departure date with T predefined reading dates at 
which the dynamic policy is to be updated, i.e., the 
booking period before departure is divided into T 
readings periods determined by the T reading dates. 
These reading dates are indexed in decreasing order, 
t=T, …, 1, 0, where t=1 denotes the first interval 
immediately preceding departure, and t=0 is at 
departure. The T-th reading period begins at the 
initial reading date at the beginning of the booking 
period, and the t-th reading period begins at t-th 
reading date furthest from the departure date. Thus, 
the indexing of the reading periods counts 
downwards as time moves closer to the departure 
date. Typically, the reading periods that are closer to 
departure cover much shorter periods of time than 
those further from departure. For example, the 
reading period immediately preceding departure may 
cover 1 day whereas the reading period 1-month 
from departure may cover 1 week. 

Let us suppose that the total seat demand for fare 
class j at the t-th reading date (time t) prior to flight 
departure is Xjt (j∈{1, 2, …, m}), where X1t 
corresponds to the highest fare class; fjt(xjt;θjt) is the 
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probability density function of Xjt, where θjt is a 
parameter (in general, vector). We assume that these 
demands are stochastically independent. The vector 
of demands is Xt=(X1t, … , Xmt). Each booking of a 
fare class j seat generates average revenue of cj, 
where c1>c2> … >cm. Let ujt, j∈{1, …, m-1} be an 
individual protection level for fare class j at time t 
prior to flight departure. This many seats are 
protected for class j from all lower classes. The 
protection for the two highest fare classes is 
obtained by summing two individual protection 
levels, (u1t+u2t), and so on. There is no protection 
level for the lowest fare class, m; umt is the booking 
limit, or number of seats available, for class m at 
time t prior to flight departure; class m is open as 
long as the number of bookings in class m remains 
less than this limit. Thus, (ujt+ … +umt) is the 
booking limit, or number of seats available, for class 
j,  j∈{1, …, m}.  Class j is open as long as the 
number of bookings in class j and lower classes 
remain less than this limit. The maximum number of 
seats that may be booked by fare classes in the next 
at time t prior to flight departure is the number of 
unsold seats Ut. Demands for the lowest fare class 
arrive first, and seats are booked for this class until a 
fixed time limit is reached, bookings have reached 
some limit, or the demand is exhausted. Sales to this 
fare class are then closed, and sales to the class with 
the next lowest fare are begun, and so on for all fare 
classes. It is assumed that any time limits on 
bookings for fare classes are prespecified. That is, 
the setting of such time limits is not part of the 
problem considered here. It is possible, depending 
on the airplane capacity, fares, and demand 
distributions that some fare classes will not be 
opened at all.  

3.1 Problem Statement  

Since the fare requests in each class are independent, 
we may find the expected revenue for m classes, 
Rmt(u1t, u2t, … , umt), in terms of the revenue for class 
m, plus the expected revenue of the remaining m-1 
classes, accrued from reading period t to departure, 
given that Ut specifies the remaining set capacity at 
the beginning of reading period t. Thus, the problem 
at time t prior to flight departure is to find an optimal 
vector of individual protection levels (for the m-1 
highest fare classes) and booking limit (for the 
lowest fare class m), 
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is the expected revenue, with R0t(⋅)=0, 
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3.2 Optimal Protection Levels  

An optimal set of individual protection levels 
1,-21 tmtt  must satisfy the conditions given 

by the following theorem. 
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where k∈{2, …, m-1}. 

Proof. The proof is a simple application of the 
Lagrange multipliers technique.   �  

One can see that the above equations are solved 
recursively for each fare class starting with the first 
fare class. This process is continued until we have 
the first k such that 
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then the optimal booking limit for the lowest fare 
class, m, is  
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It follows from the above that, in general, an optimal 
set of individual protection levels must satisfy the 
following conditions: 
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where k∈{2, …, m-1}. 

4 CONCLUSION 

This paper considers the airline seat inventory 
control problem for a single leg route taking into 
account dynamics and uncertainty of booking 
process. We show that a booking policy that 
maximizes expected revenue can be characterized by 
a simple set of conditions that relate the probability 
distributions of demand for the various fare classes 
to their respective fares. 
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