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Abstract: A comparison between well-established parametric algorithms and the more recent Smyth algorithm for 
estimation of sinusoidal signals in white noise is presented. The comparison is performed through a pseudo-
Monte Carlo analysis on simulated data. The results obtained show that Smyth algorithm has a slightly 
better performance at large Signal-to Noise Ratios. However, when the SNR drops down, the performance 
of the Smyth algorithm dramatically decreases. A better performance with respect to both ESPRIT and 
Smyth algorithms at low SNR can be obtained by a regularized filtering procedure on the data. 

1 INTRODUCTION 

The detection of sinusoidal signals  embedded in 
noise is a classic problem, of wide interest in 
numerous applications, from sonar to radar and 
tracking problems. The available algorithms can be 
classified as parametric and non parametric methods. 
The non parametric methods are based on classical 
periodogram analysis (Stoica and Moses, 1997). 
Parametric methods include Auto Regressive (AR) – 
based algorithms and high resolution eigenanalysis 
approaches. 

Popular eigenanalysis algorithms include MUSIC 
(Schmidt, 1983), ESPRIT (Roy and Kailath, 1989) 
and the classic Pisarenko algorithm (Pisarenko, 
1973). More recently, Smyth has proposed a novel 
eigenanalysis algorithm by combining a constrained 
Pisarenko approach with an iterative least square 
estimator (Smyth, 2000).  

The purpose of this paper is to compare the above 
mentioned algorithms at different Signal to Noise 
Ratios (SNR), in order to evaluate pros and cons of 
the various approaches. The comparison is done 
through a pseudo Monte Carlo method on simulated 
data. The results obtained show that the Smyth 
algorithm has a slightly better performance with 
respect to the other methods at high SNR. At low 
SNR, with specific values depending on the number 
of different sinusoids to be estimated, MUSIC and 
ESPRIT seems to yield the best performance.  

The comparison reported is in itself interesting 
and valuable, since to the Authors knowledge no 
comparison of the traditional methods with the 
Smyth approach has appeared in the literature. In 
addition to that, the above results have also led to the 
definition of a novel estimation algorithm. The novel 
approach is essentially an iterated application of the 
Smyth algorithm to a succession of regularized data 
set. The regularization is obtained as a weighted sum 
of the predicted, noise-free data from the previous 
step solution with the noise-corrupted 
measurements. The data weighting depends on a 
regularization parameter which is changed from step 
to step in order to reach, in a finite number of steps, 
the situation in which the algorithm uses only the 
data measurements. The initialization of this filtering 
procedure is done with the predicted, noise free 
solution obtained from ESPRIT. By using the 
simulative approach which has been employed for 
the algorithms comparison, it is shown that there 
does exist an optimal value of the regularization 
parameter such that for this value the proposed 
algorithm has performance better than both ESPRIT 
and Smyth algorithms.  
 The paper is organized as follows. In the next 
section, a formal statement of the problem is given 
and the Smyth algorithm is briefly reviewed. In 
section 3 the simulative trials and the results 
obtained by comparing the performance of ESPRIT, 
MUSIC, Pisarenko and Smyth algorithms are 
reported. In section 4 the novel regularization 
algorithm is presented, and the existence of an 

299Balestrino A., Caiti A. and Mati R. (2004).
PARAMETRIC ESTIMATION OF SINUSOIDS IN NOISE - A comparison between parametric approaches and the definition of a regularized Smyth
algorithm.
In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics, pages 301-306
DOI: 10.5220/0001128103010306
Copyright c© SciTePress



 

optimal continuation parameter is enlightened. In 
section 5, some comments on the computational 
burden of the various approaches are given, and 
future efforts in order to determine algorithmically 
the optimal parameter are briefly described. Finally, 
some conclusions are given.  

2 THE SMYTH PROBLEM AND 
THE SMYTH ALGORITHM 

It is supposed to have available the measurements: 
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where  are the samples of n 
sinusoidal signals, each at the frequency 

njks j ,...,1 ),( =

jiijj ≠≠  if  , ωωω , and  is a finite power 
white process uncorrelated with the sinusoidal 
signals. Given the measurement of K samples of the 
output signal , and given the knowledge of the 
number n of frequencies present in the measurement, 
the problem is to obtain an estimate of the 
frequencies 
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The following estimation procedure has been 

introduced by Smyth (Smyth, 2000). The procedure 
is composed of three steps. In the first one, a 
constrained Pisarenko algorithm is applied. The 
estimate thus obtained is used as starting point of the 
second step, in which the Osborne-Bresler-
Makovsky (OBM) estimation algorithm is applied 
(Bresler and Makovsky, 1986). Finally, the results of 
the second step are used to initialize a least square 
iterative estimation (Osborne, 1975). The idea 
behind the Smyth approach is that the three 
algorithms, Pisarenko, OBM and Osborne, are 
applied in order of increased sensitivity to the 
initialization. So, the least sensitive to the initial 
condition is applied as first, while the others are 
used to progressively refine the solution. 

Formally, let  be the auto correlation matrix of 
the measurement signal ; let  be the 
eigenvector associated to the smallest eigenvalue of 

, and let: 

Y
)(ky c

Y
n

n zczcczc 2
210 ...)( ++=  

be the annihilator polynomial whose coefficients are 
given by the components of c . By observing that 

  and  must have the same roots, Smyth 
has introduced a constrained Pisarenko estimate for 
the eigenvector  in the following iterative form: at 
each iteration  it must be solved the constrained 
least square problem:  

)(zc )( 1−zc

c
h

)1()()1(
1

)( min ++
=

hhTh
DT cY cc

cc
                (2) 

where D is a matrix imposing the root constraint. 
Equation (2) is successively solved by Pisarenko, 
OBM and Osborne least-square algorithms, using as 
starting point the solution obtained in the previous 
step. 

3 SIMULATIVE EVALUATION OF 
THE SMYTH ALGORITHM 

In this section a pseudo Monte Carlo simulative 
study is presented, reporting the performance 
obtained by the Smyth algorithm as compared with 
the standard Pisarenko, MUSIC and ESPRIT 
algorithms. Results from a non-parametric, FFT-
based, estimation algorithm are also reported. Three 
cases are considered. In the first, the signal is 
assumed to be composed by a single sinusoid, in the 
second by two and in the third by four sinusoids, all 
added up with random phases. Gaussian white noise, 
is added to the signal, with varying Signal-to-Noise 
Ratio (SNR), from –20 up to 40 dB, at 2.5 dB steps. 
All simulations have been carried out in Matlab 
environment, version 6.5. In each trial, performances 
are obtained as follows. For each algorithm, and for 
each SNR the signal y(k) is generated as the sum of 
the predefined number of tones plus noise. Then all 
the algorithms are applied to y(k). Such a procedure 
is repeated N = 100 times. The estimated Mean 
Square Error from each algorithm is computed as 
follows:  
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where  is the estimate of the j-th frequency in 
the i-th run. 

ji)(ω̂

 In the figures reported in the following, the 
value in dB of 1/MSE is plotted as a function of the 
SNR, so that for each SNR, the higher the y-scale 
value, the better is the performance for each 
algorithm. Numerically, a normalized sampling time 
of 1 second has been used, with a window of K=300 
samples. The chosen frequencies have been taken as 

1ω = 0.025 Hz, 2ω = 0.062 Hz, 3ω = 0.1021 Hz, 
4ω = 0.2848 Hz.  
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Figure 1: Performance results from pseudo Monte Carlo 
analysis for the estimation of a single frequency. dash-dot 

line: FFT; dashed, with crosses: Pisarenko; continuous 
line, with circles: MUSIC; dotted line, with diamonds: 

ESPRIT; continuous line with squares: Smyth. 
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Figure 2: Performance results from pseudo Monte Carlo 

analysis for the simultaneous estimation of two 
frequencies; dash-dot line: FFT; dashed, with crosses: 

Pisarenko; continuous line, with circles: MUSIC; dotted 
line, with diamonds: ESPRIT; continuous line with 

squares: Smyth. 

In figures 1, 2 and 3 the results obtained in the 
estimation of one, two and four sinusoids 
respectively are reported. 

The results reported show that, at high SNR, the 
Smyth approach can lead to some slight 
improvement (few dB at the best) with respect to 
ESPRIT, which has the best performance among the 
standard methods. At low SNR, the performance of 
Smyth algorithm drops down quite dramatically; 
moreover, at low SNR MUSIC becomes competitive 
with ESPRIT, succeeding in obtaining the best 
performance in some cases. The behaviour of 
MUSIC as a function of the SNR, however, is less 
predictable with respect to that of the other methods, 

and of ESPRIT in particular, showing weak 
correlation among the algorithm performance at 
varying SNR.  

-20 -10 0 10 20 30 40
0

20

40

60

80

100

120

SNR (dB)

1/
M

SE
 (d

B
)

FFT
Pisarenko
MUSIC
ESPRIT
Smyth

Figure 3: Performance results from pseudo Monte Carlo 
analysis for the simultaneous estimation of four 

frequencies. dash-dot line: FFT; dashed, with crosses: 
Pisarenko; continuous line, with circles: MUSIC; dotted 

line, with diamonds: ESPRIT; continuous line with 
squares: Smyth. 

4 SMYTH ESTIMATION WITH 
REGULARIZED DATA 

The results presented in the previous section have 
led to the exploration of a novel procedure in which 
the Smyth algorithm is applied to a filtered, 
regularized version of the data. The starting 
motivation was to increase the performance of the 
Smyth algorithm by increasing the SNR by a 
process-guided data filtering. As a result, as it will 
be shown in the following, a consistent improving in 
the performance can be obtained. The proposed data 
regularization procedure is the following: the filtered 
data are obtained as a weighted sum of the predicted, 
noise free data obtained from an estimated solution 
(by whatever method) and the noise-corrupted 
measurements. In order to generate the noise free 
predicted data , one has to start from the 
estimated frequencies; keeping fixed these 
frequencies it is possible, through standard Fourier 
analysis, to estimate also the phase and amplitude of 
these frequency components. This estimate leads to 
the estimate of the time series (1) without the 
noise components. The regularized data set is then 
obtained as:  
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where 10 ≤≤ α  is the regularization parameter, 
trading off between measurement fidelity and 
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confidence in the estimate. When 0=α  the filtered 
data are equal to the prediction (complete confidence 
in the estimate), when 1=α  no filtering is applied 
to the measurement. 

In applying the Smyth algorithm to the filtered 
data of equation (5) one has to select the 
regularization parameter. In order to investigate the 
algorithm performance as a function of the 
regularized parameter, the following procedure has 
been applied: the regularization parameter α  is 
made varying from 0 to 1 in 1+h steps:  

00 =α ,  hh
hhh ,...,1,1

1 =+= −αα , 1=hα  

The noise free predicted data  from 
the estimate obtained with parameter 1−h

)(ˆ 1 ky h−α
α  are used 

to generate the filtered data with parameter hα , 
accordingly to the equation:  
 

)(ˆ)1()()( 1 kykyky hahhha −−+= αα           (6) 
 

The Smyth algorithm is applied to this data; then 
its results are used to compute a new data prediction, 
and the procedure is iterated. The Smyth algorithm 
is also intialized with the solution obtained at the 
previous step. Substantially, the algorithm is 
successively applied to convex combinations of 
noise-free data estimates obtained from the previous 
step estimation and measurements The procedure is 
initialized at step 0 with the ESPRIT algorithm, 
whose data prediction is employed to compute the 
regularized data with 0=α . The same procedure 
described in the previous section has then been 
applied to evaluate the performance of the Smyth 
algorithm as a function of the regularization 
parameter. The results presented report the value in 
dB of 1/MSE (equation (4)) against the value of α  
from 0 to 1, at 0.1 steps. The maximum corresponds 
to the optimal regularization parameter. The two 
limit cases corresponds to the independent 
application of ESPRIT  ( 0=α ) and Smyth ( 1=α ) 
algorithms. A sample of the results obtained are 
reported in Figures 4, 5, 6: the figures refer to the 
estimation of  two sinusoids, at SNR of –5, -10, -20 
dB respectively. The results reported show the 
existence of an optimal value of the regularization 
parameter; the Smyth algorithm, applied with the 
initialization process described and with the optimal 
regularization parameter, has a performance at low 
SNR which is better than that of both the "pure 
Smyth" algorithm and ESPRIT. The average 
performance gain with respect to ESPRIT of the 
regularization approach ranges from the 8 dB of the 
–10 dB SNR case (Figure 5) to the 3 dB of the –20 
dB SNR case (Figure 6). Note that the performance 
gain with respect to the "pure Smyth" algorithm can 

be much larger (up to 45 dB, Figure 4). This general 
behaviour is systematic in all the simulations test 
performed, with sometimes even larger performance 
gains. 

It is natural to ask what is the optimal 
regularization parameter at high SNR. A typical 
behaviour is shown in Figure 7, obtained in the case 
of estimation of a single tone with SNR of 30 dB: 
the optimal value is 1, indicating that the best 
performance is given by the unregularized Smyth 
algorithm. 

It needs to be observed, though, that the 
performance curve as a function of the regularization 
parameter as determined through the pseudo Monte 
Carlo approach does not exhibit any specific 
behaviour that can be further exploited. In particular, 
Figures 4-6 has been purposely chosen to illustrate 
the several different behaviours observed. Figure 4 
illustrates the situation in which the experimental 
curve exhibits a unique maximum, with monotone 
behaviour of the performance curve before and after 
the extremal point; Figure 5 shows the presence of 
multiple maxima and minima; Figure 6 presents a 
case in which, though there does exist a unique 
maximum, there is also a minimum within the 
regularization interval, and the performance function 
does not have a monotone behaviour before the 
reaching of the maximum. Moreover, for some 
values of the regularization parameter, the 
performance is worse with respect to both ESPRIT 
and unregularized Smyth. This diversity in the 
performance curve behaviour may represent a 
serious obstacle to an efficient implementation of a 
computational scheme aimed at exploiting the better 
performance of the regularized approach. Some 
guidelines and critical evaluations toward this goal 
are reported in the next section. 
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Figure 4: Estimation results obtained from the Smyth 

algorithm and the regularization procedure as a function of 
the regularization parameter; SNR: -5 dB. 
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Figure 5: Estimation results obtained from the Smyth 

algorithm and the regularization procedure as a function of 
the regularization parameter: SNR: -10 dB. 

5 REGULARIZED ALGORITHM: 
COMPUTATIONAL ASPECTS 

The results reported in section 4 seems promising: 
they establish the existence of a regularized Smyth 
procedure through which a performance gain of 
several dB with respect to ESPRIT can be obtained 
by the proper selection of the regularization 
parameter. This may lead to a substantial 
improvement of the performance curves (Figures 1-
3) at low SNR, where the drop in performance had 
been observed. On the other hand, there are some 
non trivial computational aspects to be discusses 
before the regularization approach can be 
successfully implemented in a real life situation. 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 6: Estimation results obtained from the Smyth 
algorithm and the regularization procedure as a function of 

the regularization parameter: SNR: -20 dB 
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Figure 7: Estimation results obtained from the Smyth 

algorithm and the regularization procedure as a function of 
the regularization parameter: SNR: 30 dB. 

In particular, the performance curves of Figures 
4-6 have been determined with the knowledge of the 
true solution, which of course is never available in 
practice. A practical implementation may consist in 
repeatedly applying the algorithm varying the 
regularization parameter over the whole admissible 
range, and looking for the best performance by 
comparison of the predicted time series with the 
measured time domain data. How this is best 
accomplished (by direct residual minimization, by 
whiteness test on the residual time series, etc.) it is 
not clear at the moment. Some preliminary tests with 
the residual mean square error show both light and 
shadows: in Figure 8 the time domain MSE is 
plotted as a function of the regularization parameter 
(as before, the plot refers to the quantity 1/MSE in 
dB). Figure 8 correspond to the case reported in 
Figure 6: -20 dB SNR and 2 unknown sinusoids. 
The performance curve measured on the residual in 
time domain has the maximum in correspondence of 
the same regularization parameter as determined in 
the frequency domain with the knowledge of the true 
solution; however, the two performance curves do 
not have the same behaviour, so that a systematic 
exploitation of the time domain curve may also lead 
to inaccuracies or undetected mistakes. Additional 
considerations are related to the computational 
burden of  the Smyth approach, either in its "pure" 
or regularized version, with respect to the attainable 
performance gain. In Table 1 the mean computation 
time of ESPRIT and of the Smyth algorithm, taken 
over the 100 simulations described in Section 3, are 
reported. The computation time refers to our Matlab 
implementation running on a Pentium 4 PC, 2.4 
GHz clock, under Windows XP operating system. 
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Table 1: comparison between ESPRIT and Smyth 
algorithm computation times 

Mean computation time (ms) 

1 freq. 2 freq. 4 freq. 
ESPRIT 9.9 10.2 8.5 

SMYTH 41.6 77.4 105.4 

 
The regularized Smyth algorithm consists of the 

successive application of several Smyth algorithms, 
with in addition the computational effort of 
computing the new data set through Equation (6). So 
there may as well be a factor of 100 in the 
computational speed in favour of ESPRIT.  

6 CONCLUSIONS 

The paper has concentrated on two main topics: a 
pseudo Monte Carlo evaluation of standard 
parametric algorithms with respect to the Smyth 
algorithm; an investigation of an innovative 
regularization technique to improve the performance 
of the Smyth algorithm at low SNR. The evaluation 
study has shown that the Smyth algorithm can lead 
to a slightly better performance with respect to 
ESPRIT (the best among the standard parametric 
algorithms tested) at high SNR. The Smyth 
performance drops down dramatically at low SNR, 
with a SNR threshold that is higher the greater the 
number of sinusoids to be estimated. It has been 
shown that, with the regularization approach 
introduced, the Smyth algorithm is capable to 
improve consistently its performance at low SNR, 
with respect to its own performance, and also with 
respect to ESPRIT. In particular, performance gains 
up to 10 dB have been obtained. The results reported 
are an experimental verification of the existence of 
an optimal regularization parameter. Steps toward 
the definition of an algorithm for the search of the 
optimal parameter have been reported, as well as the 
computational issues to be taken into account.  
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Figure 8: Performance results computed from the time 

domain residual as a function of the regularization 
parameter: SNR: -20 dB 
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