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Abstract: A recursive algorithm for the least-squares linear one-stage prediction and filtering problems of discrete-time
signals using randomly delayed measurements perturbed by additive white plus coloured noises are presented.
It is assumed that the autocovariance function of the signal and the coloured noise are expressed in a semi-
degenerate kernel form and the delay is modelled by a sequence of independent Bernoulli random variables,
which indicate if the measurements arrive in time or are delayed by one sampling time. The estimators are
obtained by an innovation approach and do not use the state-space model of the signal, but only the covariance
information about the signal and the observation noises and the delay probabilities.

1 INTRODUCTION

There are many situations, such as the ones relative
to telecommunication scope, in which it is possible
that the measurements available to estimate the state
of a system may not arrive in time, but delayed by
a any sampling time. Although sometimes these
delays have been treated as measurement errors or as
deterministic functions of the time, these assumptions
are not always accurate and, in these cases, the
best way to model the delay is to interpret it as a
stochastic process, including its statistical properties
in the system model.

Many recent works have used stochastic time-delay
models to treat estimation problems. For example, the
state estimation in a model with randomly varying
sensor delays has been described as a estimation
problem in systems with stochastic parameters (Yaz
and Ray, 1998). Also, the state estimation has been
treated in the case where a finite-state Markov chain is
applied to model the random delay in the observations
(Evans and Krishnamurthy, 1999).

The above studies consider that the state-space
generating the signal is known but, in many situations,
it is not available and estimation algorithms using
another kind of information, such as covariance one,
must be used. In (Nakamori et. al, 2004b), the least-
squares linear filtering and fixed-point smoothing
problems from measurements with stochastic delays,

perturbed by white noise, is treated by using
covariance information.

In this paper, we treat the least-squares linear
prediction and filtering problems of signals using
randomly delayed measurements which are perturbed
by additive white plus coloured noises. The delay is
modelled by a binary white noise, whose values, zero
or one, indicate if the measurements arrive in time or
are delayed by one sampling period.

This study also generalizes the work (Nakamori
et. al, 2004a), which consider uncertain observations
affected by additive white plus coloured noises
without delay in time.

The estimators are obtained without requiring the
state-space model generating the signal, but just using
the covariance functions of the signal and the noises,
assuming a semi-degenerate kernel form for the signal
and coloured noise autocovariance functions, and
the delay probabilities. Finally, the effectiveness
of the proposed algorithms is shown in a computer
simulation example.

2 PROBLEM FORMULATION

We consider the estimation problem of a n× 1 signal
zk from delayed observations described by

ỹk = zk + vk + wk, k ≥ 0,
yk = (1− γk)ỹk + γkỹk−1, k ≥ 1.
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The following hypotheses are assumed:
H1. The signal process {zk; k≥0} has zero mean and
its autocovariance function is expressed as

Kz(k, s) = E[zkz
T
s ] =

{
AkB

T
s , 0 ≤ s ≤ k

BkA
T
s , 0 ≤ k ≤ s

where A and B are known n×M matrix functions.
H2. The noise process {vk; k≥ 0} is a zero-mean
white sequence with E[vkv

T
s ] = RkδK(k−s), being

δK the Kronecker delta function.
H3. The process {wk; k≥0} is a zero-mean coloured
noise withautocovariancefunction expressed as

Kw(k, s) = E[wkw
T
s ] =

{
αkβ

T
s , 0 ≤ s ≤ k

βkα
T
s , 0 ≤ k ≤ s

where α and β are known n×N matrix functions.
H4. The noise {γk; k ≥ 0} is a sequence of
independent Bernoulli variables with P [γk = 1] = pk
(probability of a delay in the measurement yk).
H5. {zk; k ≥ 0}, {vk; k ≥ 0}, {wk; k ≥ 0} and
{γk; k ≥ 0} are mutually independent.

In this paper, we consider the least-squares (LS)
linear estimation problem of the signal, zk, based
on the randomly delayed observations up to time j,
{y1, . . . , yj}; more specifically, our aim is to obtain
the one-stage predictor (j = k − 1) and the filter
(j = k). For this purpose, we will use an innovation
approach; if ŷk,k−1 denotes the LS linear estimator
of yk based on the observations {y1, . . . , yk−1} and
νk = yk − ŷk,k−1 represents the innovation, the
estimator of the signal is given by

ẑk,j =

j∑

i=1

sk,iΠ
−1

i νi, (1)

being sk,i = E[zkν
T
i ] and Πi = E[νiν

T
i ]. So,

as the estimator is been in terms of the innovation
process, we must begin by determining it. For it, since
ŷ1,0 = 0, we only need to determine

ŷk,k−1 =
k−1∑

i=1

E[ykν
T
i ]Π

−1

i νi, k ≥ 2. (2)

By denoting sk,i = E[wkν
T
i ], Sk,i = sk,i + sk,i

and taking into account the model hypotheses, we
have

E[ykν
T
i ] = (1− pk)Sk,i + pkSk−1,i, i ≤ k − 2,

E[ykν
T
k−1

] = (1− pk)Sk,k−1 + pkSk−1,k−1

+pk(1− pk−1)Rk−1.

Substituting these last expressions in (2) and denoting
ŵk,j to the LS linear estimator of the noise wk based
on the observations {y1, . . . , yj}, we conclude that

ŷk,k−1 = (1− pk)ẑk,k−1 + pkẑk−1,k−1

+(1− pk)ŵk,k−1 + pkŵk−1,k−1

+Hkνk−1,
(3)

where Hk = pk(1− pk−1)Rk−1Π
−1

k−1
.

Hence, in order to determine νk we need to obtain
the linear one-stage predictor and the filter of the
signal and the coloured noise.

3 ESTIMATION ALGORITHM

The next theorem proposes a estimation algorithm for
the one-stage predictor and filter of the signal from
randomly delayed measurements.

Theorem 1. If we consider the delayed observation
model given in Section 2, the one-stage predictor and
filter of the signal zk are obtained, respectively, as

ẑk,k−1 = AkOk−1, ẑk,k = AkOk, (4)

where the vectors Ok are recursively calculated from

Ok = Ok−1 + JkΠ
−1

k νk, O0 = 0, (5)

and νk, the innovation, satisfies

νk = yk −GA,kOk−1 −Gα,kOk−1 −Hkνk−1,
ν0 = 0,

(6)
with

Ok = Ok−1 + JkΠ
−1

k νk, O0 = 0, (7)

being

Jk = GT
B,k − rk−1G

T
A,k − ck−1G

T
α,k − Jk−1H

T
k ,

J0 = 0
(8)

and
Jk = GT

β,k − cTk−1
GT
A,k − dk−1G

T
α,k − Jk−1H

T
k ,

J0 = 0
(9)

where, for Y = A, B, α and β, the matrices GY,k

are given by

GY,k = (1− pk)Yk + pkYk−1 (10)

and Hk = pk(1− pk−1)Rk−1Π
−1

k−1
.

The matrices r, c and d are recursively calculated by

rk = rk−1 + JkΠ
−1

k JTk , r0 = 0, (11)

ck = ck−1 + JkΠ
−1

k J
T

k , c0 = 0, (12)

dk = dk−1 + JkΠ
−1

k J
T

k , d0 = 0, (13)
and Πk, the covariance of the innovation νk, verifies

Πk = (1− pk)
[
AkB

T
k + αkβ

T
k +Rk

]

+pk
[
Ak−1B

T
k−1

+ αk−1β
T
k−1

+Rk−1

]

−GA,k

[
rk−1G

T
A,k + ck−1G

T
α,k + Jk−1H

T
k

]

−Gα,k

[
dk−1G

T
α,k + cTk−1

GT
A,k + Jk−1H

T
k

]

−Hk

[
Πk−1H

T
k + JTk−1

GT
A,k + Jk−1G

T
α,k

]

Π0 = 0.
(14)
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Proof. Taking into account (1), the determining of the
filter needs the calculation of the coefficients sk,i =
E[zkν

T
i ], for i ≤ k. Using expression (3) for ŷi,i−1

and taking into account that

ŵk,j =

j∑

i=1

sk,iΠ
−1

i νi,

the hypotheses on the model leads to

sk,i = AkG
T
B,i − (1− pi)

i−1∑

j=1

sk,jΠ
−1

j S
T
i,j

−pi

i−1∑

j=1

sk,jΠ
−1

j S
T
i−1,j − sk,i−1H

T
i, 2 ≤ i ≤ k

sk,1 = AkG
T
B,1.

This expression for sk,i guarantees that

sk,i = AkJi, 1 ≤ i ≤ k, (15)

where J is a function satisfying

Ji = GT
B,i − (1− pi)

i−1∑

j=1

JjΠ
−1

j S
T
i,j

−pi

i−1∑

j=1

JjΠ
−1

j S
T
i−1,j − Ji−1H

T
i, 2 ≤ i ≤ k

J1 = GT
B,1.

(16)
Hence, if we denote

Ok =

k∑

i=1

JiΠ
−1

i νi, O0 = 0, (17)

the expression (4) for the predictor and the filter of zk
is deduced. The recursive relation (5) for the vectors
Ok is immediate from (17).

From (3), in order to obtain the innovation νk, we
also need to obtain the predictor and the filter of wk;
using an analogous reasoning to that realized to obtain
(4), we have that sk,i = αkJ i, for 1 ≤ i ≤ k, being J
a function verifying

J i = GT
β,i − (1− pi)

i−1∑

j=1

JjΠ
−1

j S
T
i,j

−pi

i−1∑

j=1

JjΠ
−1

j S
T
i−1,j − J i−1H

T
i, 2 ≤ i ≤ k

J1 = GT
β,1.

(18)
So, we obtain that

ŵk,k−1 = αkOk−1, ŵk,k = αkOk, (19)

where

Ok =
k∑

i=1

J iΠ
−1

i νi, O0 = 0 (20)

Substituting (4) and (19) in (3), and considering the
expressions (10) for Y = A and α, we have that the
innovation is given by (6). From (20), the recursive
relation (7) is immediate.

Now, taking into account that Sk,i = AkJi+αkJ i,
for 1 ≤ i ≤ k, and by denoting

rk = E
[
OkO

T
k

]
=

k∑

i=1

JiΠ
−1

i JTi , r0 = 0,

ck = E
[
OkO

T

k

]
=

k∑

i=1

JiΠ
−1

i J
T

i , c0 = 0,

dk = E
[
OkO

T

k

]
=

k∑

i=1

J iΠ
−1

i J
T

i , d0 = 0,

we easily derive the recursive expressions (8) and (9)
for Jk and Jk, and the formulas (11), (12) and (13)
for rk, ck and dk, respectively.

Finally, the expression (14) for the innovation
covariance is deduced from expression (6) together
with the recursive relations (5) and (7) for the vectors
Ok−1 and Ok−1, respectively, taking into account that
Ok−2 and Ok−2 are orthogonal to νk−1. ¤

The performance of the estimates can be measured
by the covariance matrices of the estimation errors

Pk,j = E
[
{zk − ẑk,j}{zk − ẑk,j}

T
]
.

Since the error zk− ẑk,j is orthogonal to the estimator
ẑk,j , it is immediate to verify that

Pk,j = Kz(k, k)− E
[
ẑk,j ẑ

T
k,j

]
.

and taking into account the hypotheses on Kz(k, k)
and the expressions for the one-stage predictor and
filter given in Theorem 1, we deduce the following
formulas for the filtering and one-stage prediction
error covariance matrices,

Pk,k = Ak

[
BT
k − rkA

T
k

]
,

Pk,k−1 = Ak

[
BT
k − rk−1A

T
k

]
.

4 COMPUTER EXAMPLE

This section presents a numerical simulation example
to estimate a scalar signal {zk; k ≥ 0} generated by
a first-order autoregressive model.

We consider a delayed observation model given by

ỹk = zk + vk + wk, k ≥ 0
yk = (1− γk)ỹk + γkỹk−1, k ≥ 1

where the scalar signal {zk; k ≥ 0} has zero mean
and autocovariance function

Kz(k, s) = 1.025641× (0.95)
k−s, 0 ≤ s ≤ k.
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The zero-mean white noise {vk; k ≥ 0} is a Gaussian
process with V ar [vk] = 0.9, for all k; the process
{wk; k ≥ 0} is a zero-mean coloured noise with
autocovariance function

Kw(k, s) = 0.1× (0.5)
k−s, 0 ≤ s ≤ k,

and, finally, {γk; k≥0} is a sequence of independent
Bernoulli random variables with P [γk = 1] = p, for
all k; that is, we assume that the probability of a delay
in the measurement is constant at any time.

In order to demonstrate the effectiveness of the
algorithms proposed in this paper, we have performed
a program in MATLAB, which simulates the signal
value at each iteration, and provides the prediction
and filtering estimates, as well as the corresponding
error variances.

Firstly, the prediction and filtering error variances
have been calculated for different values of the
probability of delay, specifically, for p = 0.2 and
p = 0.9. The results are displayed in Figure 1
which shows, on the one hand, that the error variances
corresponding to the filtering estimates are less than
the prediction ones and, on the other, that both, the
prediction and filtering error variances, are smaller
(and, consequently, the performance of the estimators
is better) as the probability p decreases.
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Figure 1: Filtering and prediction error variances for p =

0.2 [(a)] and p = 0.9 [(b)]

Finally, Figure 2 presents filtering estimates of
a simulated signal from delayed measurements for
p = 0.2 and p = 0.9. This figure shows that the
filter follows the signal evolution better as the delay
probability, p, is smaller, and, therefore, confirms the
comments about Figure 1.

5 CONCLUSION

In this paper, the linear one-stage predictor and filter
are derived from randomly delayed measurements
of the signal, for the case of white plus coloured
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Time k

Signal
Filter for p=0.2
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Figure 2:Signal and filtering estimates for p=0.2, 0.9

noises. It is assumed that the delay is modelled by a
sequence of independent Bernoulli random variables,
which indicate if the measurements arrive in time or
are delayed by one sampling period. The estimators
are obtained by an innovation approach and do not
require the knowledge of the state-space model of
the signal, but just the second-order moments of
the signal and noises, assuming a semi-degenerate
kernel form for the autocovariance functions of
the signal and the coloured noise, and the delay
probabilities. A numerical example shows that the
obtained algorithms are computationally feasible.
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