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Abstract: A decentralized state estimation method for automatic generation control (AGC) of interconnected power 
systems is proposed in this paper. Based on the Inclusion Principle for linear stochastic systems, the state 
space model of the system is decomposed as a group of pair-wise subsystem models. The overlapping 
decentralized estimators and fully decentralized estimators are designed for each pair subsystems in the 
framework of LQG control schemes. Two types of estimators are considered for the cases of full and 
reduced measurement sets in the framework of system closed-loop operations. Simulation results show a 
high quality of the AGC scheme based on dynamic controllers with the proposed state estimators. 

1 INTRODUCTION 

Generally speaking, in power system models, an 
overall system with a longitudinal or a loop or a 
radial or a network structure can be divided into a lot 
of overlapping interconnected subsystems. Tie line 
powers, i.e. the sine of the voltage phase angle 
differences at the two ends of tie lines connected 
with areas, are the interconnections of the 
subsystems. It has been found that the decentralized 
controllers could be designed based only on local 
measurements, especially, the tie line power 
between each pair of areas and the frequency in each 
area (Chen, 1994; Ohtsuka and Morioka, 1997; 
Stankovic et al., 1999). Although the decentralized 
control for overlapping interconnected power 
systems has attracted considerable attention of 
researchers (Chen, 1994; Chen and Stankovic, 1996; 
Ikeda et al., 1981; Malik and Hope, 1984/1985; 
Ohtsuka and Morioka, 1997; Park and Lee, 1984; 
Siljak, 1978 and 1991; Stankovic et al., 1999), the 
decentralized state estimation has been treated 
mostly within the framework of the dynamic 

controllers. The estimators of Kalman filter type are 
discussed in (Hodzic and Siljak, 1986), while in 
(Ikeda and Siljak, 1986) deterministic systems and 
their observers are considered in the case of the 
contractibility of dynamic controllers. The inclusion 
of observers for deterministic systems has been 
considered in (lftar, 1993). Luenberger observers are 
considered in (Park and Lee, 1984) separately with 
the near optimal decentralized control, since the tie-
line power flow deviations are treated as the 
interconnecting states noted as relatively slow. 
However, from the practical feasibility point of view, 
the area autonomy and decentralized estimator 
design of the power system has not been mature. 

First of all in this paper, a kind of multi-
overlapping interconnected power system model is 
decomposed as a group of pair-wise areas and/or 
subsystems (Chen et al., 2002) with only one 
overlapping interconnection (the tie-line power) 
between the two subsystems. Then, the inclusion of 
Kalman filter type estimators is formulated for the 
subsystem AGC. Finally, starting from a pair of 
electric power subsystems, overlapping and fully 
decentralized estimators based on full and reduced 
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measurement sets are formulated. The fully 
decentralized scheme used only local area 
measurements is based on a separate tie-line power 
estimator. Experimental results illustrate the main 
features of the proposed estimators applied to AGC. 

2 SYSTEM MODEL STRUCTURES 

Consider a power system with multi- overlapping 
interconnected structures (Siljak, 1978), described 
by the linear stochastic continuous-time dynamic 
model as follows: 
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[ ]11iii CdiagC = ,                     (2) 

 
the vector xi is the state deviations of the i-th area 
consisting of 10 components: aT, the valve opening 
variation of the steam turbine; Pt1, Pt2 and Pt3, the 
high, intermediate and low pressure output 
variations of steam turbine, respectively; aH, the gate 
opening variation of hydro turbine; vH, dashpot 
position variation; q, water flow variation of the 
hydro-turbine; f, frequency variation; vi, the 
deviation of the integral area control error (ACE) 
(Calovic, 1972; Malik and Hope, 1984/1985); Pei, 
the deviation of the tie-line power exchange 
variations between the i-th and other areas; while ui 
is the deviation of the scalar area control input and ξi 

is immeasurable variation of the area load; yi = [PT, 
PH, f, v, Pe]i

T defined as a vector of the local output 
deviations, where PT is the output variation of the 
steam turbine and PH is the one of the hydro unit; ηi 
represents the measurement noise vector 
corresponding to yi. The parameters and matrices, 
such as Aii, bi, Cii, fi, ati, di, mij and mji, are constant 
and with proper dimensions. 

It is obvious that the system (1) constructed by N 
interconnected subsystems has the multi-overlapping 
interconnections represented by the tie line power 
deviations, appearing at the last equation of the state 
description: 
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where, α1i = P10 / Pi0 is a steady load normalization 
factor based on area 1, that is α11 = 1. The first item 
of the sum in (3) is related to the block-diagonal 
matrix Ai, representing N-1 times overlapping 
interconnection of state xii (a part of xi); while the 
coefficients of the second item is spread around the 
non-block-diagonal matrix Aij, j=1,2,...,N, j ≠ i, 
representing the interconnections between the i-th 
and the j-th area. Because of power mutual 
exchanges, the gross tie line power change 
deviations in each area have the following relation 
as: 
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Decompose the system (1) as a group of pair-wise 

subsystems (Chen et al., 2002), i.e. only consider the 
i-th subsystem state space model coherent with the j-
th subsystem; therefore, the N(N-1)/2 pair 
subsystems can be represented by 
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i = 1, 2, ... , N-1, 
 

 j = i+1, i+2,..., N                        (6) 
 
and the other matrices as in (2). Since the tie line 
power equations between the i-th and the j-th 
subsystems are of linearly dependent according to 
(4), the overlapping interconnected power subsystem 
Sij in pairs can be rewritten by 
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i=1, 2, ... , N-1, 

 
j = i+1, i+2,..., N.                       (7) 

 
where, dotted lines show the two area models with a 
overlapping interconnected part. Thus, the power 
system, decomposed from a multi-overlapping 
interconnected structure to a group of pair-wise 
subsystems (Chen et al., 2002), preserves inherent 
interconnected features. 

3 INCLUSION OF ESTIMATORS 

The centralized design of AGC is typically faced 
with both conceptual and computational difficulties, 
since the necessary information for control has to be 
acquired from power areas and generating plants 
spread over large geographic territories. It has been 
found that the inclusion principle is a suitable tool 
for coping with the problem of decentralized AGC 
design. However, the problem has been treated 

almost exclusively within the framework of 
deterministic models and static state or output 
feedback (Siljak, 1991). In this section, we shall 
present the inclusion of state estimators for a pair of 
subsystem Sij, based on the stochastic system 
inclusion principle. 

For a decentralized state estimation of power 
systems, the system (1) can first be decomposed as a 
pairs of subsystems (5) or (7). Then, in the case of 
(7), consider corresponding estimators Eij for Sij, in 
the Kalman filter form: 
 

Eij: .              (8) ]ˆ[ˆˆ xCyLBuxAx −++=&

 
Where is the estimations of state 
vector

x̂
[ ]TTTT

jjjeiiii
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gain matrix, other vectors and matrices are 
corresponding to Sij. Suppose there is a pair 
expansion )E~,S~( ijij

for the pair (Sij, Eij ) in the 
framework of the input/state/output inclusion, we 
state the following: 

Definition 1. The pair )E~,S~( ijij
includes the pair 

(Sij, Eij ) if there exist two pairs of full rank matrices 
(U, V), satisfying UV = I19 and full rank matrix R 
and S, such that for any given initial state vector 
[x0

T, 0 ]Tx̂ T and input u(t) the conditions [ 0
T~x ˆ,

0
T~x ]T 

=Ew{[x0
T, 0 ]Tx̂ T; diag[V,V]}and )(~ tu =Es{u(t);R} 

imply both [xT(t), )](ˆT tx T=Cw{[ )(~T tx , )(~̂T tx ]T; diag[U,U]} 
and y(t)=Cw{ )(~ ty ;S} ( 0tt ≥∀ t), where Es{ּ} and 
Ew {ּ} means strict and weak expansions and Cw{ּ} 
represents weak contraction (see reference Stankovic 
et al., 1999). 

Theorem 2. The system 
ijS~ includes the system 

Sij, in the sense of Definition 1 if and only if  
 

Ai= VAU i~ , 
 

AiB= RBAU i ~~ , 
 

CAi=S iAC~~ V, 
 

AiB=S BAC i ~~~ R, 
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Rη=S Sη~R T, 

 
 i = 0, 1, 2, ....                         (9) 

 
There are two special cases of inclusions, i.e. 

restriction and aggregation. 
Theorem 3. The estimator Eij is a restriction of 

the estimator if the system S
ijE~ ij is a restriction of 

the system 
ijS~  and 
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 (VLC = VCL ~~ )∩(VLRηLTVT = T
~

~~ LRL η
), 

 
together with one of the followings: 
 

(a) (VB= RB~ )∩ (VL= TL~ ), 
 
(b)  (VBQ= B~ )∩(VL= TL~ ), 
 
(c)  (VB= RB~ )∩ (VLS= ), L~

 
(d)  (VBQ= B~ )∩(VLS= L~ ), 

 
where Q and T are full rank matrices. 

Theorem 4. The estimator Eij is an aggregation 
of the estimator ijE~ if the system Sij is an 
aggregation of the system 

ijS~  and 
 
(LCU = CLU ~~ )∩(LRηLT= ), TT

~
~~ ULRLU η

 
together with one of the followings: 
 

(a)  (BQ= BU~ )∩ (LS= LU~ ), 
 
(b)  (B= RBU~ )∩(LS= LU~ ), 

 
(c)  (BQ= BU~ )∩ (L= TLU~ ), 

 
(d) (B= RBU~ )∩(L= TLU~ ), 

 
where Q and T are full rank matrices. 

4 DECENTRALIZED 
ESTIMATION FOR AGC 

4.1 Overlapping Decentralized 
Estimation 

The problem of overlapping structures in the pairs of 
subsystems should be solved, i.e. the deviation of the 
tie-line power variation of subsystems Pei is 
decoupled for each subsystem. The algorithm to 
expand a pair of subsystem Sij and to get 
corresponding estimators Eij is that, by imposing the 
conditions of inclusion principle presented in the 
above, a group of expanding matrices can properly 
be chosen, aimed at decomposition of overlapping 
part represented by dotted lines in (7), such as: 
 

V=block-diag[I9, (1 1)T, I9], 
 

T=block-diag[I4, (1 1)T, I4], 
 

U= block-diag{I9, [ β  (1- β )], I9}, 

 
S= block-diag{I4, [ β  (1- β )], I4},         (10) 

 
where, β is a scalar satisfying 0<β<1; the appropriate 
complementary matrices MA, MB, MC and ML 
correspond to the matrices in (7), (8) and satisfy the 
equations 
 

AMVAUA +=
~ , BMVBB +=~ , 

 

CMTCUC +=
~ , LMVLSL +=~ ,          (11) 

 
such that A~ , B~ , C~ and L~ include the corresponding 
matrices of a pair of subsystems and their 
estimations, respectively. Although the system Sij 
can become (5) after expanded and modified by 
using (10) and (11), it is important to know that the 
transform matrices (10) are needed for contractions 
to original spaces of each pair subsystems to show 
their interconnected relations when the decentralized 
estimations and controls are designed. 

To formulate overlapping decentralized state 
estimation in the framework of LQG control for the 
pair subsystems in (7), the non-block diagonal 
matrices, such as, Aij, j = 1,2,...,N, j i, as 
byproducts to be considered after local estimation 
and control is established, are neglected. The local 
estimation are given by 

≠
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k = i, j,                            (12) 

 
where, k denotes the state estimate vector. 
Constructing the estimate gain matrices in the block 
diagonal form for the pair of decoupled subsystems 
as 

x̂

 
],[~

jiD LLdiagL = ,                   (13) 
 
and in order to satisfy the estimator restriction and 
aggregation conditions for contractions, we modify 
the estimator gain matrix from DL~  to ML~  by adding 

L~∆  relative to Aij, j = 1,2,...,N, j i, to the equation 
(13) and obtain 
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Overlapping decentralized state estimator LS can be 
implemented in the pair subsystems Sij by LS 
= M TLU~ directly, or by LSS =

MLU~ , VLS =
MTL~  

indirectly, based on the Theorem 3 and Theorem 4. 

4.2 Fully Decentralized Estimation 

Although the estimators described above have been 
designed in a decentralized way, they are, essentially, 
centralized. The desired features for an efficient 
decentralized AGC require that each decentralized 
dynamic controller and/or estimator should be 
applied to its subsystem, using the measurements 
only accessible to its own area (Calovic, 1972 and 
1984). In order to comply with these requirements, a 
modification of the overlapping decentralized 
methodology has been done, leading to a fully 
decentralized estimator.  

The tie-line power variations depend, essentially, 
on the states in both the i-th and the j-th areas. 
According to (3) and (8), fully decentralized 
estimators can be designed, starting from the 
estimator of tie-line power variations defined by 
 

)ˆ(ˆ
eeme PPLP −=&                       (15) 

 
where, Lm is an properly chosen constant, adapted to 
both dynamics of the tie-line power variations and 
the measurement noise. It is obvious that this 
estimator is completely autonomous, independent of 
the remaining parts of the state vector, having in 
mind that the estimators for the remaining parts of 
the local state vectors become completely decoupled. 
The estimator gain matrix is now modified from (14) 
to 
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As far as the types of expansion are concerned, fully 
decentralized estimator schemes are designed in 
parallel with the overlapping decentralized ones. 

5 EXPERIMENTAL RESULTS 

The efficiency of the described estimation schemes 
applied to AGC has been tested by simulation. All 
the experiments have been done in the case that the 
estimators have been implemented together with the 
corresponding gain matrices mapping the state 

estimates to the control signals. These gain matrices 
have been obtained by using the methodology 
(Stankovic et al., 1999), based on expansion, 
decomposition to subsystems and the local 
application of the LQG optimal design. In order to 
get a better practical feeling about the quality of 
different estimators, responses to a step load 
disturbance in area i have been analyzed. 

For the pair of subsystems Sij, without losing 
generality, assume i = 1, j = 2, let the parameters of 
the system matrices in (7) correspond to the 
references (Chen, 1994; Calovic, 1984; Stankovic et 
al., 1999), and have expanding matrices be (10). 
Consider the non-balance case of area 1 and area 2, 
that is a steady load normalization factor α12 = P10 / 
P20 =10. Therefore, choose β = 0.1 and step 
disturbance is 0.01 with 5% white noises in ξ1. 
When yi = [PT, PH, f, v, Pe]i

T, i = 1, 2, the estimators 
are designed for full measurement sets; while yi = [f, 
v, Pe]i

T, i=1,2, the estimators for reduced 
measurement sets. The following notation has been 
adopted for estimator designs: (1) Overlapping 
decentralized (OD) scheme, full measurement sets 
(FMS); (2) OD scheme, reduced measurement sets 
(RMS); (3) Fully decentralized (FD) scheme, FMS; 
(4) FD scheme, RMS. In the case of OD scheme, 
Lm=0; and Lm=120 for FD. 

In Figure 1 (a), differences between the globally 
optimal estimation errors (obtained by implementing 
the globally optimal LQG regulator for the entire 
model (7)) and the estimation errors obtained by the 
proposed estimators are depicted for f1, Pe and f2, all 
the noise terms are set to zero, in order to provide a 
better insight into the corresponding dynamics. 
Smooth overlapped curves are for the cases of 1 and 
2, whereas fluctuant overlapped ones for 3 and 4. 
Obviously, FD schemes are only slightly inferior to 
OD schemes; the number of measurements does not 
influence the estimation accuracy significantly. 
Figure 1 (b) corresponding to the general situation, 
when the stochastic effects are present. It is 
interesting to observe that the estimator 
decentralization does not degrade the noise 
immunity significantly; however, the reduction of 
the number of measurements leads in both OD and 
FD cases to a visible increase of the estimation error. 
This estimator parameter Lm plays an important role 
in achieving the desired overall system performance. 
Figure 1 (c) shows the estimation error differences 
when Lm = 20 for FD schemes, corresponding to 
Figure 1 (b). Obviously, the estimation quality is 
deteriorated. 

In Figure 2 (a) and Figure 2 (b), the true states 
are represented, together with their estimates, for 
OD scheme / FMS case and FD scheme / RMS case. 
The estimation accuracy is obvious; the bias, 
especially pronounced in f1, represents a 
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Figure 2: Estimations and responses. 
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