loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: P. Amado-Caballero 1 ; I Varona-Peña 1 ; B. Gutiérrez-García 1 ; J. M. Aguiar-Pérez 1 ; M. Rodriguez-Cayetano 1 ; J. Gomez-Gil 1 ; J. R. Garmendia-Leiza 2 and P. Casaseca-De-la-higuera 1

Affiliations: 1 Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Valladolid, Spain ; 2 Centro de Salud Los Jardinillos, SACYL, Palencia, Spain

Keyword(s): Respiratory Diseases, Cough, Audio Analysis, CNN, XAI, Occlusion Maps, Optimization.

Abstract: Respiratory diseases, including COPD and cancer, are among the leading causes of mortality worldwide, often resulting in prolonged dependency and impairment. Telemedicine offers immense potential for managing respiratory diseases, but its effectiveness is hindered by the lack of reliable objective measures for symptoms. Recent advances in deep learning have significantly enhanced the detection and analysis of coughing episodes, a key symptom of respiratory conditions, by leveraging audio signals and pattern recognition techniques. This paper introduces an efficient cough detection system tailored for real-time monitoring on low-end computational devices, such as smartphones. By integrating Explainable Artificial Intelligence (XAI), we identify salient regions in audio spectrograms that are crucial for cough detection, enabling the design of an optimized Convolutional Neural Network (CNN). The optimized CNN maintains high detection performance while significantly reducing computation time and memory usage. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 216.73.216.61

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Amado-Caballero, P., Varona-Peña, I., Gutiérrez-García, B., Aguiar-Pérez, J. M., Rodriguez-Cayetano, M., Gomez-Gil, J., Garmendia-Leiza, J. R. and Casaseca-De-la-higuera, P. (2025). Optimization of a Deep-Learning-Based Cough Detector Using eXplainable Artificial Intelligence for Implementation on Mobile Devices. In Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - HEALTHINF; ISBN 978-989-758-731-3; ISSN 2184-4305, SciTePress, pages 491-498. DOI: 10.5220/0013141500003911

@conference{healthinf25,
author={P. Amado{-}Caballero and I Varona{-}Peña and B. Gutiérrez{-}García and J. M. Aguiar{-}Pérez and M. Rodriguez{-}Cayetano and J. Gomez{-}Gil and J. R. Garmendia{-}Leiza and P. Casaseca{-}De{-}la{-}higuera},
title={Optimization of a Deep-Learning-Based Cough Detector Using eXplainable Artificial Intelligence for Implementation on Mobile Devices},
booktitle={Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - HEALTHINF},
year={2025},
pages={491-498},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013141500003911},
isbn={978-989-758-731-3},
issn={2184-4305},
}

TY - CONF

JO - Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies - HEALTHINF
TI - Optimization of a Deep-Learning-Based Cough Detector Using eXplainable Artificial Intelligence for Implementation on Mobile Devices
SN - 978-989-758-731-3
IS - 2184-4305
AU - Amado-Caballero, P.
AU - Varona-Peña, I.
AU - Gutiérrez-García, B.
AU - Aguiar-Pérez, J.
AU - Rodriguez-Cayetano, M.
AU - Gomez-Gil, J.
AU - Garmendia-Leiza, J.
AU - Casaseca-De-la-higuera, P.
PY - 2025
SP - 491
EP - 498
DO - 10.5220/0013141500003911
PB - SciTePress