Mobile Gift Recommendation Algorithm

Caíque de Paula Pereira, Ruyther Parente da Costa, Edna Dias Canedo


The mobile application market and e-commerce sales have grown steadily, along with the growth of studies and product recommendation solutions implemented in e-commerce systems. In this context, this paper proposes a recommendation algorithm for mobile devices based on the COREL framework. The proposed recommendation algorithm is a customization of the COREL framework, based on the complexity of the implementation associated with iOS mobile applications. Therefore, this work aims to customize a gift recommendation algorithm in the context of mobile devices using as main input the user preferences for the gifts recommendation in the Giftr application.


  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. Piscataway NJ, United States.
  2. Balabanovi, M. and Shoham, Y. (1997). Fab: contentbased, collaborative recommendation. New York NY, United States.
  3. Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. California State University, Fullerton.
  4. Buscapé (2016). Accessed on: November 26th 2016.
  5. Company, B. (2016). Accessed on: November 26th 2016.
  6. de Braslia, U. C. (2016). Distrito Federal DF, Brasil. Brazilian Education Programm for iOS Development.
  7. de Souza, A. E. R. (2013). Um modelo para recomendac¸a˜o de cursos de especializac¸a˜o baseado no perfil profissional do candidato. Dissertac¸a˜o (Mestrado) - Universidade Presbiteriana Mackenzie - So Paulo.
  8. do Nascimento, A. R., da Ssilva, B. F., and dos Santos, G. G. (2009). E-commerce: O Melhor Caminho no Mercado Atual.
  9. Gama, R., André, N., Pereira, C., Almeida, L., and Pinto, P. (2011). Algoritmo de Recomendac¸a˜o Baseado em Passeios Aleatórios num Grafo Bipartido.
  10. Keele, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.
  11. Lomadee (2016a). lomadee/api-de-ofertas/introducao. Accessed on: November 26th 2016.
  12. Lomadee, O. A. (2016b). portal/lomadee/api-de-ofertas/recursos. Accessed on: November 26th 2016.
  13. Lomadee, P. (2016c). portal/lomadee. Accessed on: November 26th 2016.
  14. Mendes, R. (2016). Os n úmeros do mercado de ecommerce. Accessed on: November 26th 2016.
  15. Ponte, J. M. and Croft, W. B. (1998). A language Modeling Approach to Infomation Retrival.
  16. Qiu, J., Lin, Z., and Li, Y. (2015). Predicting customer purchase behavior in the e-commerce context. Springer Science.
  17. Resnick, P. and Varian, H. R. (1997). Recommender Systems.
  18. Zan Huang, Daniel Zeng, H. C. (2004). A Comparative Study of Recommendation Algorithms in E- Commerce Applications.

Paper Citation

in Harvard Style

Pereira C., Parente da Costa R. and Dias Canedo E. (2017). Mobile Gift Recommendation Algorithm . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 565-573. DOI: 10.5220/0006330405650573

in Bibtex Style

author={Caíque de Paula Pereira and Ruyther Parente da Costa and Edna Dias Canedo},
title={Mobile Gift Recommendation Algorithm},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Mobile Gift Recommendation Algorithm
SN - 978-989-758-247-9
AU - Pereira C.
AU - Parente da Costa R.
AU - Dias Canedo E.
PY - 2017
SP - 565
EP - 573
DO - 10.5220/0006330405650573