An Agent-based Approach to Decentralized Global Optimization - Adapting COHDA to Coordinate Descent

Joerg Bremer, Sebastian Lehnhoff


Heuristics like evolution strategies have been successfully applied to optimization problems with rugged, multi-modal fitness landscapes, to non-linear problems, and to derivative free optimization. Parallelization for acceleration often involves domain specific knowledge for data domain partition or functional or algorithmic decomposition. We present an agent-based approach for a fully decentralized global optimization algorithm without specific decomposition needs. The approach extends the ideas of coordinate descent to a gossiping like decentralized agent approach with the advantage of escaping local optima by replacing the line search with a full 1-dimensional optimization and by asynchronously searching different parts of the search space using agents. We compare the new approach with the established covariance matrix adaption evolution strategy and demonstrate the competitiveness of the decentralized approach even compared to a centralized algorithm with full information access. The evaluation is done using a bunch of well-known benchmark functions.


  1. Ahrari, A. and Shariat-Panahi, M. (2015). An improved evolution strategy with adaptive population size. Optimization, 64(12):2567-2586.
  2. Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (1997). Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol, UK, UK, 1st edition.
  3. Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. (2005). Gossip algorithms: Design, analysis and applications. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., volume 3, pages 1653-1664. IEEE.
  4. Bremer, J. and Lehnhoff, S. (2016a). Decentralized coalition formation in agent-based smart grid applications. In Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection, volume 616 of Communications in Computer and Information Science, pages 343-355. Springer.
  5. Bremer, J. and Lehnhoff, S. (2016b). A decentralized PSO with decoder for scheduling distributed electricity generation. In Squillero, G. and Burelli, P., editors, Applications of Evolutionary Computation: 19th European Conference EvoApplications (1), volume 9597 of Lecture Notes in Computer Science, pages 427- 442, Porto, Portugal. Springer.
  6. Brent, R. P. (1971). An algorithm with guaranteed convergence for finding a zero of a function. Comput. J., 14(4):422-425.
  7. Colorni, A., Dorigo, M., Maniezzo, V., et al. (1991). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life , volume 142, pages 134-142. Paris, France.
  8. Dekker, T. (1969). Finding a zero by means of successive linear interpolation. Constructive aspects of the fundamental theorem of algebra, pages 37-51.
  9. Hansen, E. (1980). Global optimization using interval analysis - the multi-dimensional case. Numer. Math., 34(3):247-270.
  10. Hansen, N. (2011). The CMA Evolution Strategy: A Tutorial. Technical report.
  11. Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9(2):159-195.
  12. Hansen, P., Jaumard, B., and Lu, S.-H. (1992). Global optimization of univariate lipschitz functions ii: New algorithms and computational comparison. Math. Program., 55(3):273-292.
  13. Hinrichs, C., Bremer, J., and Sonnenschein, M. (2013a). Distributed Hybrid Constraint Handling in Large Scale Virtual Power Plants. In IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society.
  14. Hinrichs, C., Lehnhoff, S., and Sonnenschein, M. (2014). A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems. In Operations Research Proceedings 2012, pages 297-302. Springer.
  15. Hinrichs, C., Sonnenschein, M., and Lehnhoff, S. (2013b). Evaluation of a Self-Organizing Heuristic for Interdependent Distributed Search Spaces. In Filipe, J. and Fred, A. L. N., editors, International Conference on Agents and Artificial Intelligence (ICAART 2013) , volume Volume 1 - Agents, pages 25-34. SciTePress.
  16. Horst, R. and Pardalos, P. M., editors (1995). Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, Netherlands.
  17. Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm.Journal of Global Optimization, 39(3):459-471.
  18. Knight, J. N. and Lunacek, M. (2007). Reducing the spacetime complexity of the CMA-ES. In Genetic and Evolutionary Computation Conference, pages 658-665.
  19. Li, G. and Wang, Q. (2014). A cooperative harmony search algorithm for function optimization. Mathematical Problems in Engineering, 2014.
  20. Li, Y., Mascagni, M., and Gorin, A. (2009). A decentralized parallel implementation for parallel tempering algorithm. Parallel Computing, 35(5):269-283.
  21. Liang, J., Qu, B., Suganthan, P., and Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report.
  22. Loshchilov, I., Schoenauer, M., and Sebag, M. (2012). Selfadaptive surrogate-assisted covariance matrix adaptation evolution strategy. CoRR, abs/1204.2356.
  23. Luo, Z. Q. and Tseng, P. (1992). On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35.
  24. Lust, T. and Teghem, J. (2010). The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR, abs/1007.4063.
  25. Mishra, S. K. (2006). Some new test functions for global optimization and performance of repulsive particle swarm method. Technical Report SSRN 926132, North-Eastern Hill University, Shillong (India).
  26. Nieße, A. (2015). Verteilte kontinuierliche Einsatzplanung in Dynamischen Virtuellen Kraftwerken. PhD thesis.
  27. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., L ünsdorf, O., and Sonnenschein, M. (2014). Conjoint dynamic aggrgation and scheduling for dynamic virtual power plants. In Ganzha, M., Maciaszek, L. A., and Paprzycki, M., editors, Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland.
  28. Nieße, A. and Sonnenschein, M. (2013). Using grid related cluster schedule resemblance for energy rescheduling - goals and concepts for rescheduling of clusters in decentralized energy systems. In Donnellan, B., Martins, J. F., Helfert, M., and Krempels, K.-H., editors, SMARTGREENS, pages 22-31. SciTePress.
  29. Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables.
  30. Picard, G. and Glize, P. (2006). Model and analysis of local decision based on cooperative self-organization for problem solving. Multiagent Grid Syst., 2(3):253- 265.
  31. Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1):33-57.
  32. Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. (2007). A novel population initialization method for accelerating evolutionary algorithms. Computers & Mathematics with Applications, 53(10):1605 - 1614.
  33. Rigling, B. D. and Moore, F. W. (1999). Exploitation of sub-populations in evolution strategies for improved numerical optimization. Ann Arbor, 1001:48105.
  34. Salomon, R. (1996). Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. a survey of some theoretical and practical aspects of genetic algorithms. Biosystems, 39(3):263 - 278.
  35. Simon, D. (2013). Evolutionary Optimization Algorithms. Wiley.
  36. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., and Tiwari, S. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical report, Nanyang Technological University, Singapore.
  37. Talbi, E. (2009). Metaheuristics: From Design to Implementation. Wiley Series on Parallel and Distributed Computing. Wiley.
  38. Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3):475-494.
  39. Ulmer, H., Streichert, F., and Zell, A. (2003). Evolution strategies assisted by gaussian processes with improved pre-selection criterion. In in IEEE Congress on Evolutionary Computation,CEC 2003, pages 692- 699.
  40. Vanneschi, L., Codecasa, D., and Mauri, G. (2011). A comparative study of four parallel and distributed pso methods. New Generation Computing, 29(2):129-161.
  41. Watts, D. and Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature, (393):440-442.
  42. Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming, 151(1):3-34.
  43. Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE Trans. Evolutionary Computation, 3(2):82-102.

Paper Citation

in Harvard Style

Bremer J. and Lehnhoff S. (2017). An Agent-based Approach to Decentralized Global Optimization - Adapting COHDA to Coordinate Descent . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-219-6, pages 129-136. DOI: 10.5220/0006116101290136

in Bibtex Style

author={Joerg Bremer and Sebastian Lehnhoff},
title={An Agent-based Approach to Decentralized Global Optimization - Adapting COHDA to Coordinate Descent},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},

in EndNote Style

JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - An Agent-based Approach to Decentralized Global Optimization - Adapting COHDA to Coordinate Descent
SN - 978-989-758-219-6
AU - Bremer J.
AU - Lehnhoff S.
PY - 2017
SP - 129
EP - 136
DO - 10.5220/0006116101290136