Wide Broadband ASE Source based on Thulium-doped Fibre for 2 μm Wavelength Region

M. A. Khamis, K. Ennser

2017

Abstract

This paper investigates the generation of the amplified spontaneous emission (ASE) from thulium-doped silica fibre pumped at 1570 nm. The developed model provides the ASE spectral power at short and long wavelength bands by using two different thulium doped fibre types with optimized fibre length. Shorter wavelengths in the emission band can be accessed with a short thulium fibre, whereas longer wavelengths can be obtained using a long thulium fibre. Our findings reveal that, in contrast to a 100 nm (1800nm-1900nm) and 70 nm (1900nm-1970nm) broadband source at short and long wavelength bands, a broader spectrum source can be achieved at about 170 nm (1800nm-1970nm) by a combined of the two ASE spectra via a wideband 50:50 coupler. As a result, the proposed ASE source configuration doubles the bandwidth of the conventional single fibre based light source.

References

  1. Hu, Z. et al. (2014). 'High power single stage thulium doped superfluorescent fibre source', Appl. Phys. B., 118(1), pp. 101-107.
  2. Li, J. (2014). 'Wide wavelength selectable all-fibre thulium doped fibre laser between 1925 nm and 2200 nm', Opt. Express, 22( 5), pp. 5387-5399.
  3. Hsu, Z. C. et al. (2008). 'High power broadband all fibre super-fluorescent source with linear polarization and near diffraction-limited beam quality', Proc. SPIE 7004, 70044M .
  4. Morse, T. F., Oh, K. and Reinhart, L. J. (1995). 'Carbon dioxide detection using a co-doped Tm-Ho optical fiber', Proc. SPIE, 2510, pp.158-164.
  5. Jackson, S. D., Sabella, A. and Lancaster, D. G. (2007). 'Application and development of high-power and highly efficient silica-based fiber lasers operating at 2µm', IEEE J. Sel. Top. Quantum Electron, 13(3), pp. 567-572.
  6. Sugimoto, N., Sims, N. Chan, K. and Killinger, D. K. (1990). 'Eye-safe 2.1 µm Ho lidar for measuring atmospheric density profiles', Opt. Lett., 15, pp. 302- 304.
  7. Halder, A. et al (2012). 'Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber', IEEE Photonics J., 4(1), pp. 14-18.
  8. Cheung, C. S. et al. (2015), 'High resolution Fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source', Opt. Express, 23(3), pp. 1992-2001.
  9. Oh, K. et al. (1994). 'Broadband superfluorescent emission of the 3H4 - 3H6 transition in a Tm-doped multicomponent silicate fiber', Opt. Lett., 19, pp. 1131-1133.
  10. Shen, D. Y. et al. (2008). 'Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power', Opt. Express, 16(15), pp. 11021- 11026.
  11. Tsang, Y., El-Sherif, H. A., and King, T. A. (2005). 'Broadband amplified spontaneous emission fiber source near 2µm using resonant in-band pumping', J. Mod. Opt. 52, pp. 109-118.
  12. Gorjan, M., North T. and Rochette, M. 2012. Model of the amplified spontaneous emission generation in thulium-doped silica fibers, J. Opt. Soc. Am. B., 29, 2886.
  13. Yu, G. et al. (2010). 'A theoretical model of thuliumdoped silica fiber's ASE in the 1900 nm waveband', Optoelectron. Lett. 6(1), 45-47.
  14. Agger, S. D. & Povlsen, J. H. (2006). 'Emission and absorption cross section of thulium doped silica fibers', Optics express, 14(1), pp. 50-57.
  15. Jackson, S. D. (2009). 'The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared', Laser Photon. Rev., 3(5), pp. 466-482.
  16. Li, Z. et al. (2013). 'Diode-pumped wideband thuliumdoped fiber amplifiers for optical communications in the 1800 - 2050 nm window', Optics Express, 21(22), pp. 26450-26455.
  17. Stevens, G., Legg, T. & Way, B. (2015). 'All-fibre widely tunable thulium laser', Proc. SPIE 9728, Fiber Laser XIII, 972814.
  18. Jackson, S. D. and King, T. A. (1999). 'Theoretical modeling of Tm-doped silica fiber lasers', Journal of Lightwave Technology, 17(5), pp. 948-956.
  19. Whitley T. J. and Wyatt R. (1993). 'Alternative Gaussian spot size polynomial for use with doped fiber amplifiers', IEEE Photon. Technol. Lett. 5(11), pp. 1325-1327.
  20. Emami, S. D. (2011). 'Thulium-Doped Fiber Amplifier, Numerical and Experimental Approach', Nova Science Publishers, Inc.
Download


Paper Citation


in Harvard Style

Khamis M. and Ennser K. (2017). Wide Broadband ASE Source based on Thulium-doped Fibre for 2 μm Wavelength Region . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 141-146. DOI: 10.5220/0006101801410146


in Bibtex Style

@conference{photoptics17,
author={M. A. Khamis and K. Ennser},
title={Wide Broadband ASE Source based on Thulium-doped Fibre for 2 μm Wavelength Region},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={141-146},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006101801410146},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Wide Broadband ASE Source based on Thulium-doped Fibre for 2 μm Wavelength Region
SN - 978-989-758-223-3
AU - Khamis M.
AU - Ennser K.
PY - 2017
SP - 141
EP - 146
DO - 10.5220/0006101801410146