# A Shrinkage Factor-based Iteratively Reweighted Least Squares Shrinkage Algorithm for Image Reconstruction

### Jian Zhao, Chao Zhang, Jian Jia, Tingting Lu, Weiwen Su, Rui Wang, Shunli Zhang

#### Abstract

In order to improve convergence speed and reconstruction precision of IRLS shrinkage algorithm (SIRLS), an improved iteratively reweighted least squares shrinkage algorithm (I-SIRLS) is proposed in this paper. A Shrinkage factor is brought in each iteration process of SIRLS to adjust the weight coefficient to approximate the optimal Lagrange Multiplier gradually. Put simply, the convergence speed is accelerated. The proposed algorithm needs less measurements. It can also get rid of falling into local optimal solution easily and the dependence on sparsity level. Simulations show that the I-SIRLS algorithm has faster convergence speed and higher reconstruction precision compared to the SIRLS.

#### References

- Cai, T. T., Xu, G. and Zhang, J. (2009). On Recovery of Transactions on Information Theory, 55(7):3388-3397.
- Chartrand, R. (2007). Exact Reconstruction of Sparse Signals via Nonconvex Minimization. In IEEE Signal Processing Letters, 14(10):707-710.
- Chartrand, R., and Yin, Wotao. (2008). Iteratively reweighted algorithms for compressive sensing. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869-3872.
- Daubechies, I., DeVore, R., Fornasier, M., & Güntürk, C. S. (2010). Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63(1):1-38.
- Daubechies, I., DeVore, R., Fornasier, M., and Gunturk, S. (2008). Iteratively Re-weighted Least Squares minimization: Proof of faster than linear rate for sparse recovery. Information Sciences and Systems, pp. 26-29.
- Donoho, D.L. (2006) Compressed sensing. In IEEE Transactions on Information Theory, 52(4):1289-1306.
- Ewout, V. D. B. and Friedlander, M. P. (2009). Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2), 890-912.
- Forster, R. J. 2007. Microelectrodes-Retrospect and Prospect. Encyclopedia of Electrochemistry.
- Miosso, C. J., von Borries, R., Argaez, M., Velazquez, L., Quintero, C. and Potes, C. M. (2009). Compressive Sensing Reconstruction With Prior Information by Iteratively Reweighted Least-Squares. In IEEE Transactions on Signal Processing, 57(6):2424-2431.
- Needell, D. and Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3): 301-321.
- Rodriguez, P. and Wohlberg, B. (2006). An Iteratively Reweighted Norm Algorithm for Total Variation Regularization. Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 892-896.
- Ramani, S. and Fessler, J. A. (2010). An accelerated iterative reweighted least squares algorithm for compressed sensing MRI. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 257-260.
- Wang, J. H., Huang, Z. T., Zhou, Y. Y. and Wang, F. H. (2012). Robust Sparse Recovery Based on

#### Paper Citation

#### in Harvard Style

Zhao J., Zhang C., Jia J., Lu T., Su W., Wang R. and Zhang S. (2016). **A Shrinkage Factor-based Iteratively Reweighted Least Squares Shrinkage Algorithm for Image Reconstruction** . In *ISME 2016 - Information Science and Management Engineering IV - Volume 1: ISME,* ISBN 978-989-758-208-0, pages 289-293. DOI: 10.5220/0006449202890293

#### in Bibtex Style

@conference{isme16,

author={Jian Zhao and Chao Zhang and Jian Jia and Tingting Lu and Weiwen Su and Rui Wang and Shunli Zhang},

title={A Shrinkage Factor-based Iteratively Reweighted Least Squares Shrinkage Algorithm for Image Reconstruction},

booktitle={ISME 2016 - Information Science and Management Engineering IV - Volume 1: ISME,},

year={2016},

pages={289-293},

publisher={SciTePress},

organization={INSTICC},

doi={10.5220/0006449202890293},

isbn={978-989-758-208-0},

}

#### in EndNote Style

TY - CONF

JO - ISME 2016 - Information Science and Management Engineering IV - Volume 1: ISME,

TI - A Shrinkage Factor-based Iteratively Reweighted Least Squares Shrinkage Algorithm for Image Reconstruction

SN - 978-989-758-208-0

AU - Zhao J.

AU - Zhang C.

AU - Jia J.

AU - Lu T.

AU - Su W.

AU - Wang R.

AU - Zhang S.

PY - 2016

SP - 289

EP - 293

DO - 10.5220/0006449202890293