A Bayesian Approach for Weighted Ontologies and Semantic Search

Anna Formica, Michele Missikoff, Elaheh Pourabbas, Francesco Taglino

Abstract

Semantic similarity search is one of the most promising methods for improving the performance of retrieval systems. This paper presents a new probabilistic method for ontology weighting based on a Bayesian approach. In particular, this work addresses the semantic search method SemSim for evaluating the similarity among a user request and semantically annotated sources. Each resource is annotated with a vector of features (annotation vector), i.e., a set of concepts defined in a reference ontology. Analogously, a user request is represented by a collection of desired features. The paper shows, on the bases of a comparative study, that the adoption of the Bayesian weighting method improves the performance of the SemSim method.

References

  1. Clark, W. T. and Radivojac, P. (2013). Informationtheoretic evaluation of predicted ontological annotations. Bioinformatics, 29(13):i53-i61.
  2. Dulmage, A. and Mendelsohn, N. (1958). Coverings of bipartite graphs. Canadian Journal of Mathematics, 10:517 - 534.
  3. Formica, A., Missikoff, M., Pourabbas, E., and Taglino, F. (2008). Weighted Ontology for Semantic Search, pages 1289-1303. Springer Berlin Heidelberg, Berlin, Heidelberg.
  4. Formica, A., Missikoff, M., Pourabbas, E., and Taglino, F. (2010). Semantic search for enterprises competencies management. In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (IC3K 2010), pages 183-192.
  5. Formica, A., Missikoff, M., Pourabbas, E., and Taglino, F. (2013). Semantic search for matching user requests with profiled enterprises. Computers in Industry, 64(3):191 - 202.
  6. Gao, J.-B., Zhang, B.-W., and Chen, X.-H. (2015). A wordnet-based semantic similarity measurement combining edge-counting and information content theory. Engineering Applications of Artificial Intelligence, 39:80 - 88.
  7. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):199-220.
  8. Grubisic, A., Stankov, S., and Perai, I. (2013). Ontology based approach to bayesian student model design. Expert Systems with Applications, 40(13):5363-5371.
  9. Jung, M., Jun, H.-B., Kim, K.-W., and Suh, H.-W. (2010). Ontology mapping-based search with multidimensional similarity and bayesian network. The International Journal of Advanced Manufacturing Technology, 48(1):367-382.
  10. Lin, D. (1998). An information-theoretic definition of similarity. In In Proceedings of the 15th International Conference on Machine Learning, pages 296-304. Morgan Kaufmann.
  11. Pearl, J. and Russell, S. (2001). Bayesian networks. In Arbib, M. A., editor, Handbook of Brain Theory and Neural Networks, pages 157-160. MIT Press.
  12. Rajput, Q. and Haider, S. (2011). Bnosa: A bayesian network and ontology based semantic annotation framework. J. Web Sem., 9(2):99-112.
  13. Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proc. of the 14th Int. Joint Conference on Artificial Intelligence - Volume 1, IJCAI'95, pages 448-453, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  14. Rusu, D., Fortuna, B., and Mladenic, D. (2014). Measuring concept similarity in ontologies using weighted concept paths. Applied Ontology, 9(1):65-95.
  15. Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11):613-620.
  16. Seco, N., Veale, T., and Hayes, J. (2004). An intrinsic information content metric for semantic similarity in WordNet. Proc. of ECAI, 4:1089-1090.
  17. Yazid, H., Kalti, K., and Amara, N. E. B. (2014). A new similarity measure based on bayesian network signature correspondence for braint2 tumors cases retrieval. Int. J. Computational Intelligence Systems, 7(6):1123-1136.
Download


Paper Citation


in Harvard Style

Formica A., Missikoff M., Pourabbas E. and Taglino F. (2016). A Bayesian Approach for Weighted Ontologies and Semantic Search . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016) ISBN 978-989-758-203-5, pages 171-178. DOI: 10.5220/0006073301710178


in Bibtex Style

@conference{keod16,
author={Anna Formica and Michele Missikoff and Elaheh Pourabbas and Francesco Taglino},
title={A Bayesian Approach for Weighted Ontologies and Semantic Search},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)},
year={2016},
pages={171-178},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006073301710178},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)
TI - A Bayesian Approach for Weighted Ontologies and Semantic Search
SN - 978-989-758-203-5
AU - Formica A.
AU - Missikoff M.
AU - Pourabbas E.
AU - Taglino F.
PY - 2016
SP - 171
EP - 178
DO - 10.5220/0006073301710178