An Evolutionary Approach to Formation Control with Mobile Robots

Jane Holland, Josephine Griffith, Colm O'Riordan


The field of swarm robotics studies multi-robot systems, emphasising decentralised and self-organising behaviours that deal with limited individual abilities, local sensing and local communication. A robotic system needs to be flexible to environmental changes, robust to failure and scalable to large groups. These desired features can be achieved through collective behaviours such as aggregation, synchronisation, coordination and exploration. We aim to analyse these emerging behaviours by applying an evolutionary approach to a specific robotic system, called the Kilobot, in order to learn behaviours. If successful, not only would the cost and computation time for evolutionary computation in mobile robotics decrease, but the reality-gap could also narrow.


  1. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M. and Nolfi, S. (2007). Self-organized coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1):224-239.
  2. Brooks, R. A. (1992). Artifical life and real robots. InToward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life , page 3. MIT press.
  3. Dorigo, M., Trianni, V., S¸ ahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223-245.
  4. Fogel, D. B. (1997). The advantages of evolutionary computation. In BCEC, pages 1-11.
  5. Mavroidis, C. and Ferreira, A. (2013). Nanorobotics: current approaches and techniques. Springer Science & Business Media.
  6. Mondada, F., Franzi, E. and Ienne, P. (1994). Mobile robot miniaturisation: A tool for investigation in control algorithms. In Experimental robotics III, pages 501- 513. Springer.
  7. Mondada, F., Pettinaro, G. C., Kwee, I., Guignard, A., Floreano, D., Gambardella, L., Nolfi, S., Deneubourg, J.-L. and Dorigo, M. (2002). Swarm-bot: A swarm of autonomous mobile robots with self-assembling capabilities. In Proceedings of the Workshop on Self-Organisation and Evolution of Social Behaviour, number LIS-CONF-2002-007, pages 11-22.
  8. Rohmer, E., Singh, S. P. and Freese, M. (2013). V-rep: A versatile and scalable robot simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1321-1326. IEEE.
  9. Rubenstein, M., Ahler, C. and Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In Robotics and Automation (ICRA), 2012 IEEE International Conference, pages 3293-3298. IEEE.
  10. Rubenstein, M., Cornejo, A. and Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. In Science, pages 795-799.
  11. Trianni, V. and Dorigo, M. (2006). Self-organisation and communication in groups of simulated and physical robots. Biological cybernetics, 95(3):213-231.
  12. Trianni, V., Nolfi, S. and Dorigo, M. (2008). Evolution, self-organization and swarm robotics. In Swarm Intelligence, pages 163-191. Springer.
  13. Valentini, G., Hamann, H. and Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pages 1305-1314.
  14. Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67-82.

Paper Citation

in Harvard Style

Holland J., Griffith J. and O'Riordan C. (2016). An Evolutionary Approach to Formation Control with Mobile Robots . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 225-230. DOI: 10.5220/0006068602250230

in Bibtex Style

author={Jane Holland and Josephine Griffith and Colm O'Riordan},
title={An Evolutionary Approach to Formation Control with Mobile Robots},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},

in EndNote Style

JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - An Evolutionary Approach to Formation Control with Mobile Robots
SN - 978-989-758-201-1
AU - Holland J.
AU - Griffith J.
AU - O'Riordan C.
PY - 2016
SP - 225
EP - 230
DO - 10.5220/0006068602250230