Robust Fuzzy Modeling and Symbolic Regression for Establishing Accurate and Interpretable Prediction Models in Supervising Tribological Systems

Edwin Lughofer, Gabriel Kronberger, Michael Kommenda, Susanne Saminger-Platz, Andreas Promberger, Falk Nickel, Stephan Winkler, Michael Affenzeller


In this contribution, we discuss data-based methods for building regression models for predicting important characteristics of tribological systems (such as the friction coefficient), with the overall goal of improving and partially automatizing the design and dimensioning of tribological systems. In particular, we focus on two methods for synthesis of interpretable and potentially non-linear regression models: (i) robust fuzzy modeling and (ii) enhanced symbolic regression using genetic programming, both embedding new methodological extensions. The robust fuzzy modeling technique employs generalized Takagi-Sugeno fuzzy systems. Its learning engine is based on the Gen-Smart-EFS approach, which in this paper is (i) adopted to the batch learning case and (ii) equipped with a new enhanced regularized learning scheme for the rule consequent parameters. Our enhanced symbolic regression method addresses (i) direct gradient-based optimization of numeric constants (in a kind of memetic approach) and (ii) multi-objectivity by adding complexity as a second optimization criterion to avoid over-fitting and to increase transparency of the resulting models. The comparison of the new extensions with state-of-the-art non-linear modeling techniques based on nine different learning problems (including targets wear, friction coefficients, temperatures and NVH) shows indeed similar errors on separate validation data, but while (i) achieving much less complex models and (ii) allowing some insights into model structures and components, such that they could be confirmed as very reliable by the experts working with the concrete tribological system.


  1. Affenzeller, M., Winkler, S., Kronberger, G., Kommenda, M., Burlacu, B., and Wagner, S. (2014). Gaining deeper insights in symbolic regression. In Riolo, R., Moore, J. H., and Kotanchek, M., editors, Genetic Programming Theory and Practice XI, Genetic and Evolutionary Computation. Springer.
  2. Affenzeller, M., Winkler, S., Wagner, S., and Beham, A. (2009). Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Chapman & Hall, Boca Raton, Florida.
  3. Aleksendri, D. (2010). Neural network prediction of brake friction materials wear. Wear, 268(12):117 - 125.
  4. Aleksendric, D. and Carlone, P. (2015). Soft Computing in the Design and Manufacturing of Composite Materials: Applications to Brake Friction and Thermoset Matrix Composites. Woodhead Publishing.
  5. Alonso, C. L., Montana, J. L., and Borges, C. E. (2009). Evolution strategies for constants optimization in genetic programming. In 21st International Conference on Tools with Artificial Intelligence, ICTAI 7809, pages 703-707.
  6. Berger, E. (2002). Friction modeling for dynamic system simulation. Applied Mechanics Reviews, 55(6):535- 577.
  7. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
  8. Castro, J. and Delgado, M. (1996). Fuzzy systems with defuzzification are universal approximators. IEEE Transactions on Systems, Man and Cybernetics, part B: Cybernetics, 26(1):149-152.
  9. Cernuda, C., Lughofer, E., Maerzinger, W., and Kasberger, J. (2011). NIR-based quantification of process parameters in polyetheracrylat (PEA) production using eflxible non-linear fuzzy systems. Chemometrics and Intelligent Laboratory Systems, 109(1):22-33.
  10. Chiu, S. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3):267-278.
  11. De Wit, C. C., Olsson, H., Astrom, K. J., and Lischinsky, P. (1995). A new model for control of systems with friction. Automatic Control, IEEE Transactions on, 40(3):419-425.
  12. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182-197.
  13. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189-1232.
  14. Gray, R. (1984). Vector quantization. IEEE ASSP Magazine, 1(2):4-29.
  15. Haenlein, M. and Kaplan, A. (2004). A beginner's guide to partial least squares (PLS) analysis. Understanding Statistics, 3(4):283-297.
  16. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction - Second Edition. Springer, New York Berlin Heidelberg.
  17. Hastie, T., Tibshirani, R., and Friedman, J. (2010). Regularized paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1).
  18. Hosenfeldt, T., Schulz, E., Glerl, J., and Steinmetz, S. (2014). Friction tailored to your requirements. In KG, S. T. G. . C., editor, Solving the Powertrain Puzzle - 10th Schaeffler Symposium , chapter 23, pages 331 - 344. Springer Vieweg.
  19. Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear scaling. In Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., and Costa, E., editors, Genetic Programming, Proceedings of EuroGP'2003, volume 2610 of LNCS, pages 70-82, Essex. Springer-Verlag.
  20. Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., and Wagner, S. (2013). Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pages 1121-1128. ACM.
  21. Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA, USA.
  22. Kronberger, G. (2011). Symbolic Regression for Knowledge Discovery - Bloat, Overfitting, and Variable Interaction Networks. Number 64 in Johannes Kepler University, Linz, Reihe C. Trauner Verlag+Buchservice GmbH.
  23. Langdon, W., Soule, T., Poli, R., and Foster, J. (1999). The evolution of size and shape. In Advances in Genetic Programming, volume 3, chapter 8, pages 163-190. MIT Press.
  24. Lemos, A., Caminhas, W., and Gomide, F. (2011). Multivariable gaussian evolving fuzzy modeling system. IEEE Transactions on Fuzzy Systems, 19(1):91-104.
  25. Loh, W.-Y., Basch, R. H., Li, D., and Sanders, P. (2000). Dynamic modeling of brake friction coefficients. Technical report, SAE Technical Paper.
  26. Lughofer, E. (2008). FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems, 16(6):1393-1410.
  27. Lughofer, E. (2011). Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications. Springer, Berlin Heidelberg.
  28. Lughofer, E. (2013). On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues. Information Sciences, 251:22-46.
  29. Lughofer, E., Cernuda, C., Kindermann, S., and Pratama, M. (2015). Generalized smart evolving fuzzy systems. Evolving Systems, 6(4):269-292.
  30. Lughofer, E. and Sayed-Mouchaweh, M. (2015). Autonomous data stream clustering implementing incremental split-and-merge techniques - towards a plugand-play approach. Information Sciences, 204:54-79.
  31. Mann, H. and Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of mathematical Statistics, 18:50- 60.
  32. Mukherjee, S. and Eppstein, M. J. (2012). Differential evolution of constants in genetic programming improves efficacy and bloat. In Rodriguez, K. and Blum, C., editors, GECCO 2012 Late breaking abstracts workshop, pages 625-626, Philadelphia, Pennsylvania, USA. ACM.
  33. Nelles, O. (2001). Springer, Berlin.
  34. Poli, R. (2003). A simple but theoretically-motivated method to control bloat in genetic programming. In Genetic programming, pages 204-217. Springer.
  35. Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A field guide to genetic programming. Published via and freely available at http://
  36. Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer Science. Springer, Berlin.
  37. Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
  38. Sellgren, U., Bjrklund, S., and Andersson, S. (2003). A finite element-based model of normal contact between rough surfaces. Wear, 254(11):1180 - 1188. Papers presented at the 10th Nordic Conference on Tribology, {NORDTRIB} 2002.
  39. Senatore, A., D'Agostino, V., Giuda, R. D., and Petrone, V. (2011). Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence. Tribology International, 44(10):1199 - 1207.
  40. Smits, G. F. and Kotanchek, M. (2005). Pareto-front exploitation in symbolic regression. In O'Reilly, U. M., Yu, T., Riolo, R., and Worzel, B., editors, Genetic Programming Theory and Practice II, volume 8 of Genetic Programming, pages 283-299. Springer Verlag, New York.
  41. Smola, A. and Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 9:155-161.
  42. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1):116-132.
  43. Topchy, A. and Punch, W. F. (2001). Faster genetic programming based on local gradient search of numeric leaf values. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 155-162, San Francisco, California, USA. Morgan Kaufmann.
  44. Xiao, L., Bjrklund, S., and Rosn, B. (2007). The influence of surface roughness and the contact pressure distribution on friction in rolling/sliding contacts. Tribology International, 40(4):694 - 698. {NORDTRIB} 2004.
  45. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, pages 301-320.

Paper Citation

in Harvard Style

Lughofer E., Kronberger G., Kommenda M., Saminger-Platz S., Promberger A., Nickel F., Winkler S. and Affenzeller M. (2016). Robust Fuzzy Modeling and Symbolic Regression for Establishing Accurate and Interpretable Prediction Models in Supervising Tribological Systems . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 51-63. DOI: 10.5220/0006068400510063

in Bibtex Style

author={Edwin Lughofer and Gabriel Kronberger and Michael Kommenda and Susanne Saminger-Platz and Andreas Promberger and Falk Nickel and Stephan Winkler and Michael Affenzeller},
title={Robust Fuzzy Modeling and Symbolic Regression for Establishing Accurate and Interpretable Prediction Models in Supervising Tribological Systems},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (IJCCI 2016)},

in EndNote Style

JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (IJCCI 2016)
TI - Robust Fuzzy Modeling and Symbolic Regression for Establishing Accurate and Interpretable Prediction Models in Supervising Tribological Systems
SN - 978-989-758-201-1
AU - Lughofer E.
AU - Kronberger G.
AU - Kommenda M.
AU - Saminger-Platz S.
AU - Promberger A.
AU - Nickel F.
AU - Winkler S.
AU - Affenzeller M.
PY - 2016
SP - 51
EP - 63
DO - 10.5220/0006068400510063