Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks

Stefano Beretta, Mauro Castelli, Ivo Gonçalves, Ivan Merelli, Daniele Ramazzotti

Abstract

Gene and protein networks are very important to model complex large-scale systems in molecular biology. Inferring or reverseengineering such networks can be defined as the process of identifying gene/protein interactions from experimental data through computational analysis. However, this task is typically complicated by the enormously large scale of the unknowns in a rather small sample size. Furthermore, when the goal is to study causal relationships within the network, tools capable of overcoming the limitations of correlation networks are required. In this work, we make use of Bayesian Graphical Models to attach this problem and, specifically, we perform a comparative study of different state-of-the-art heuristics, analyzing their performance in inferring the structure of the Bayesian Network from breast cancer data.

References

  1. Akaike, H. (1992). Information theory and an extension of the maximum likelihood principle. In Breakthroughs in statistics, pages 610-624. Springer.
  2. Akutsu, T., Miyano, S., Kuhara, S., et al. (1999). Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In Pacific symposium on biocomputing, volume 4, pages 17-28. Citeseer.
  3. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., and Di Bernardo, D. (2007). How to infer gene networks from expression profiles. Molecular systems biology, 3(1):78.
  4. Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using bayesian networks to analyze expression data. Journal of computational biology, 7(3-4):601-620.
  5. Glover, F. (1989). Tabu search-part i. ORSA Journal on computing, 1(3):190-206.
  6. Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2):95-99.
  7. Hill, S. M., Heiser, L. M., Cokelaer, T., Unger, M., Nesser, N. K., Carlin, D. E., Zhang, Y., Sokolov, A., Paull, E. O., Wong, C. K., et al. (2016). Inferring causal molecular networks: empirical assessment through a community-based effort. Nature methods, 13(4):310- 318.
  8. Hwang, C.-R. (1988). Simulated annealing: theory and applications. Acta Applicandae Mathematicae, 12(1):108-111.
  9. Imoto, S., Goto, T., Miyano, S., et al. (2001). Estimation of genetic networks and functional structures between genes by using bayesian networks and nonparametric regression. In Pacific symposium on Biocomputing, volume 7, pages 175-186.
  10. Kabir, M., Noman, N., and Iba, H. (2010). Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC bioinformatics, 11(1):1.
  11. Parsons, S. (2011). Probabilistic graphical models: Principles and techniques. The Knowledge Engineering Review, 26(02):237-238.
  12. Pearl, J. (2003). Causality: models, reasoning and inference. Econometric Theory, 19:675-685.
  13. Schramm, G., Kannabiran, N., and König, R. (2010). Regulation patterns in signaling networks of cancer. BMC systems biology, 4(1):1.
  14. Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461-464.
  15. Scutari, M. (2009). Learning bayesian networks with the bnlearn r package. arXiv preprint arXiv:0908.3817.
  16. Spurrier, B., Ramalingam, S., and Nishizuka, S. (2008). Reverse-phase protein lysate microarrays for cell signaling analysis. Nature protocols, 3(11):1796-1808.
  17. Stolovitzky, G., Monroe, D., and Califano, A. (2007). Dialogue on reverse-engineering assessment and methods. Annals of the New York Academy of Sciences, 1115(1):1-22.
  18. Zou, M. and Conzen, S. D. (2005). A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21(1):71-79.
Download


Paper Citation


in Harvard Style

Beretta S., Castelli M., Gonçalves I., Merelli I. and Ramazzotti D. (2016). Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 217-224. DOI: 10.5220/0006064102170224


in Bibtex Style

@conference{ecta16,
author={Stefano Beretta and Mauro Castelli and Ivo Gonçalves and Ivan Merelli and Daniele Ramazzotti},
title={Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},
year={2016},
pages={217-224},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006064102170224},
isbn={978-989-758-201-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks
SN - 978-989-758-201-1
AU - Beretta S.
AU - Castelli M.
AU - Gonçalves I.
AU - Merelli I.
AU - Ramazzotti D.
PY - 2016
SP - 217
EP - 224
DO - 10.5220/0006064102170224