An Ontology-enabled Context-aware Learning Record Store Compatible with the Experience API

Jonas Anseeuw, Stijn Verstichel, Femke Ongenae, Ruben Lagatie, Sylvie Venant, Filip De Turck

Abstract

In education, learners no longer perform learning activities in a well-defined and static environment like a physical classroom. Digital learning environments promote learners anytime, anywhere and anyhow learning. As such, the context in which learners undertake these learning activities can be very diverse. To optimize learning and the environment in which it occurs, learning analytics measure data about learners and their context. Unfortunately, current state of the art standards and systems are limited in capturing the context of the learner. In this paper we present a Learning Record Store (LRS), compatible with the Experience API, that is able to capture the learners’ context, more concretely his location and used device. We use ontologies to model the xAPI and context information. The data is stored in a RDF triple store to give access to different services. The services will show the advantages of capturing context information. We tested our system by sending statements from 100 learners completing 20 questions to the LRS.

References

  1. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and Steggles, P. (1999). Towards a better understanding of context and context-awareness. In Handheld and ubiquitous computing, pages 304-307. Springer.
  2. Bohl, O., Scheuhase, J., Sengler, R., and Winand, U. (2002). The sharable content object reference model (scorm) - a critical review. In Computers in Education, 2002. Proceedings. International Conference on, pages 950-951 vol.2.
  3. Corbi, A. and Burgos, D. (2014). Review of Current Student-Monitoring Techniques used in eLearningFocused recommender Systems and Learning analytics. The Experience API & LIME model Case Study. International Journal of Interactive Multimedia and Artificial Intelligence , 2(7):44-52.
  4. De Meester, B., Ghaem Sigarchian, H., De Nies, T., Verborgh, R., Salliau, F., Mannens, E., and Van de Walle, R. (2015). SERIF: A Semantic ExeRcise Interchange Format. In Proceedings of the 1st International Workshop on LINKed EDucation.
  5. De Nies, T., Salliau, F., Verborgh, R., Mannens, E., and Van de Walle, R. (2015). Tincan2prov: Exposing interoperable provenance of learning processes through experience api logs. In Proceedings of the 24th International Conference on World Wide Web, WWW 7815 Companion, pages 689-694, New York, NY, USA. ACM.
  6. Experience API Working Group (2013). Experience API. Version 1.0.1.
  7. Fernndez-Delgado, M., Mucientes, M., Vzquez-Barreiros, B., and Lama, M. (2014). Learning analytics for the prediction of the educational objectives achievement. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1-4.
  8. Fiedler, S. and Väljataga, T. (2010). Personal learning environments: concept or technology?
  9. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):199-220.
  10. IEEE Std (2005). IEEE Standard for Learning Technology - Data Model for Content to Learning Management System Communication. IEEE Std 1484.11.1-2004.
  11. IMS Global Learning Consortium et at. (2013). Caliper Learning Analytics Framework. Technical report.
  12. J. Snell, M. Atkins, W. Norris, C. Messina, M. Wilkinson, and R. Dolin (2015). Activity streams 2.0 w3c working draft. W3C Working Draft, W3C. http://www.w3.org/TR/2015/WD-activitystreamscore/.
  13. Kinnebrew, J. S., Loretz, K. M., and Biswas, G. (2013). A contextualized, differential sequence mining method to derive students' learning behavior patterns. JEDMJournal of Educational Data Mining, 5(1):190-219.
  14. M. Sporny, G. Kellogg, M. Lanthaler (Eds.), and W3C RDF Working Group (2014). JSON-LD 1.0: A JSONbased Serialization for Linked Data. W3C Recommendation, W3C.
  15. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee, J. (2015). Rdfox: A highly-scalable rdf store. pages 3-20.
  16. Rabelo, T., Lama, M., Amorim, R. R., and Vidal, J. C. (2015). Smartlak: A big data architecture for supporting learning analytics services. In Frontiers in Education Conference (FIE), 2015. 32614 2015. IEEE, pages 1-5.
  17. Romero, C., López, M.-I., Luna, J.-M., and Ventura, S. (2013). Predicting students' final performance from participation in on-line discussion forums. Comput. Educ., 68:458-472.
  18. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., and Duval, E. (2012). Context-aware recommender systems for learning: A survey and future challenges. IEEE Trans. Learn. Technol., 5(4):318-335.
  19. Verstichel, S., Kerckhove, W., Dupont, T., Volckaert, B., Ongenae, F., De Turck, F., and Demeester, P. (2015). Limeds and the trapist project: a case study. In 7e International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, Proceedings, volume 2 KEOD, pages 501- 508.
  20. Vidal, J. C., Rabelo, T., and Lama, M. (2015). Semantic description of the experience api specification. In 2015 IEEE 15th International Conference on Advanced Learning Technologies, pages 268-269.
  21. Vzquez-Barreiros, B., Mucientes, M., and Lama, M. (2015). Prodigen: Mining complete, precise and minimal structure process models with a genetic algorithm. Information Sciences, 294:315 - 333. Innovative Applications of Artificial Neural Networks in Engineering.
  22. xAPI Vocabulary Working Group (2015). Companion Specification for xAPI Vocabularies .
  23. xAPI Vocabulary Working Group (2016). Experience xAPI Vocabulary Primer.
Download


Paper Citation


in Harvard Style

Anseeuw J., Verstichel S., Ongenae F., Lagatie R., Venant S. and De Turck F. (2016). An Ontology-enabled Context-aware Learning Record Store Compatible with the Experience API . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016) ISBN 978-989-758-203-5, pages 88-95. DOI: 10.5220/0006049000880095


in Bibtex Style

@conference{keod16,
author={Jonas Anseeuw and Stijn Verstichel and Femke Ongenae and Ruben Lagatie and Sylvie Venant and Filip De Turck},
title={An Ontology-enabled Context-aware Learning Record Store Compatible with the Experience API},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)},
year={2016},
pages={88-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006049000880095},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)
TI - An Ontology-enabled Context-aware Learning Record Store Compatible with the Experience API
SN - 978-989-758-203-5
AU - Anseeuw J.
AU - Verstichel S.
AU - Ongenae F.
AU - Lagatie R.
AU - Venant S.
AU - De Turck F.
PY - 2016
SP - 88
EP - 95
DO - 10.5220/0006049000880095