Distributed Physical Sensors Network for the Protection of Critical Infrastractures Against Physical Attacks

M. P. Jarabo-Amores, M. Rosa-Zurera, D. de la Mata-Moya, A. Capria, A. L. Saverino, C. Callegari, F. Berizzi, P. Samczynski, K. Kulpa, M. Ummenhofer, H. Kuschel, A. Meta, S. Placidi, K. Lukin, G. D’Amore


The SCOUT project is based on the use of multiple innovative and low impact technologies for the protection of space control ground stations and the satellite links against physical and cyber-attacks, and for intelligent reconfiguration of the ground station network (including the ground node of the satellite link) in the case that one or more nodes fail. The SCOUT sub-system devoted to physical attacks protection, SENSNET, is presented. It is designed as a network of sensor networks that combines DAB and DVB-T based passive radar, noise radar, Ku-band radar, infrared cameras, and RFID technologies. The problem of data link architecture is addressed and the proposed solution described.


  1. Moore, R., Lopes, J., 1999. Paper templates. In TEMPLATE'06, 1st International Conference on Template Production. SciTePress.
  2. Smith, J., 1998. The book, The publishing company. London, 2nd edition.
  3. Critical infrastructure protection in the fight against terrorism - COM(2004) 702.
  4. EU Cooperation Theme 10 Security Work Programme 2013. (European Commission c(2013) 3953 of 27 June 2013.
  5. Royal Decree 1066/2001, 28th September, Regulations that define the radio-electric public domain protection conditions, limitations to radio-electric emissions, and health protection measures against radio-electric emissions.
  6. ECA Table, The European Table of Frequecy Allocations and Aplications In the frequency range 8.3 kHz to 3000 GHz. Approved may 2014.
  7. Mazar, H., International, regional and national regulation of SRDs, ITU WORKSHOP on SHORT RANGE DEVICES (SRDs) AND ULTRA WIDE BAND (UWB). Geneva, 3 June 2014.
  8. IEEE Standard Radar Definitions, IEEE Aerospace and Electronics System Society Sponsored by the Radar System Panel, 2008.
  9. Coleman, C.J., Yardley, H., DAB based passive radar: Performance calculations and trials, International Conference on Radar, 2008, pp. 691-694, September 2008.
  10. Saini, R., Cherniakov, M., DTV signal ambiguity function analysis for radar application, IEE Proceedings on Radar, Sonar and Navigation, vol.152, no.3, pp. 133- 142, 3 June 2005.
  11. Conti, M., Berizzi, F., Petri, D., Capria A., Martorella, M., High range resolution DVB-T Passive Radar, Radar Conference (EuRAD), 2010 European, Paris, 2010, pp. 109-112.
  12. Kulpa, K., Malanowski, M., Misiurewicz, J., Samczynski, P., Passive radar for strategic object protection, Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2011 IEEE International Conference on, Tel Aviv, 2011, pp. 1-4.
  13. Gomez-del-Hoyo, P., del-Rey-Maestre, N., Mata-Moya, D., Jarabo-Amores, M.P., First results on ground targets tracking using UHF passive radars under non line-of-sight conditions, Signal Processing Symposium (SPSympo), pp.1-6, June 2015.
  14. Malanowski M., Kulpa, K., Detection of Moving Targets With Continuous-Wave Noise Radar: Theory and Measurements, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 9, pp. 3502-3509, Sept. 2012.
  15. Shelevytsky, I., Kulpa, K., Glushko D., Yanovsky, F.J., Short-range C-band noise radar for meteorological application, Electronics and Nanotechnology (ELNANO), 2013 IEEE XXXIII International Scientific Conference, Kiev, 2013, pp. 473-475.
  16. Lukin, K.A., Mogyla, A.A., Palamarchuk, V.P., Vyplavin, P.L., Zemlyaniy, O.V., Shiyan, Y.A., Zaets, M.K., Ka-band bistatic ground-based noise waveform SAR for short-range applications. Radar, Sonar & Navigation, IET, 2008, vol. 2, no. 4, pp. 233 - 243.
  17. Lukin, K.A., Sliding Antennas for Noise Waveform SAR, Applied Radio Electronics, 2005, Vol. 4, #1, pp. 103- 106.
  18. Metasensing Airborne SAR, available at: http://www.me tasensing.com/wp/index.php/products/airborne-sar/. Accessed: 15-05-2016.
  19. Marotti, L., Meta, A., Coccia, A., MetaSensing airborne radar: X- and Ku-band single-pass digital surface model generation, Synthetic Aperture Radar (APSAR), 2015 IEEE 5th Asia-Pacific Conference on, Singapore, 2015, pp. 184-186.
  20. Vitrociset, A smartphone to navigate the justice of Naples, June 2012. Available at: http://www.vitrociset.it/. Accessed: 15-05-2016.

Paper Citation

in Harvard Style

Jarabo-Amores M., Rosa-Zurera M., Mata-Moya D., Capria A., L. Saverino A., Callegari C., Berizzi F., Samczynski P., Kulpa K., Ummenhofer M., Kuschel H., Meta A., Placidi S., Lukin K. and D’Amore G. (2016). Distributed Physical Sensors Network for the Protection of Critical Infrastractures Against Physical Attacks . In - DCCI, (ICETE 2016) ISBN , pages 0-0. DOI: 10.5220/0006017601390150

in Bibtex Style

author={M. P. Jarabo-Amores and M. Rosa-Zurera and D. de la Mata-Moya and A. Capria and A. L. Saverino and C. Callegari and F. Berizzi and P. Samczynski and K. Kulpa and M. Ummenhofer and H. Kuschel and A. Meta and S. Placidi and K. Lukin and G. D’Amore},
title={Distributed Physical Sensors Network for the Protection of Critical Infrastractures Against Physical Attacks},
booktitle={ - DCCI, (ICETE 2016)},

in EndNote Style

JO - - DCCI, (ICETE 2016)
TI - Distributed Physical Sensors Network for the Protection of Critical Infrastractures Against Physical Attacks
SN -
AU - Jarabo-Amores M.
AU - Rosa-Zurera M.
AU - Mata-Moya D.
AU - Capria A.
AU - L. Saverino A.
AU - Callegari C.
AU - Berizzi F.
AU - Samczynski P.
AU - Kulpa K.
AU - Ummenhofer M.
AU - Kuschel H.
AU - Meta A.
AU - Placidi S.
AU - Lukin K.
AU - D’Amore G.
PY - 2016
SP - 0
EP - 0
DO - 10.5220/0006017601390150